42 research outputs found

    Seismic Response of Partially Filled Rectangular Liquid Tank With Internal Objects

    Get PDF
    Sloshing is a phenomenon describing the disturbance in an unrestrained free surface of liquid in a container. It encompasses a wide spectrum of problems of engineering interest. The container in question may be a tea cup, a kerosene jerkin, a water or oil tank, a liquid transporting road tanker, a reservoir or even an ocean. The problem of sloshing is common to all such containers which are partially filled and thus have unrestrained free surface. This dissertation makes a small but honest attempt to study the seismic response of partially filled rigid rectangular tank, with internal objects, firmly supported to the ground. The novelty of this PhD is that it focuses on a special class of container with submerged internal object

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments

    Get PDF
    YesThis book is an edition of the Special Issue Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments that was published in Water journal

    Computational Fluid Dynamics 2020

    Get PDF
    This book presents a collection of works published in a recent Special Issue (SI) entitled “Computational Fluid Dynamics”. These works address the development and validation of existent numerical solvers for fluid flow problems and their related applications. They present complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics (MHD) phenomena. The applications are wide and range from aerodynamic drag and pressure waves to geometrical blade modification on aerodynamics characteristics of high-pressure gas turbines, hydromagnetic flow arising in porous regions, optimal design of isothermal sloshing vessels to evaluation of (hybrid) nanofluid properties, their control using MHD, and their effect on different modes of heat transfer. Recent advances in numerical, theoretical, and experimental methodologies, as well as new physics, new methodological developments, and their limitations are presented within the current book. Among others, in the presented works, special attention is paid to validating and improving the accuracy of the presented methodologies. This book brings together a collection of inter/multidisciplinary works on many engineering applications in a coherent manner

    Characterization and Modelling of Composites, Volume II

    Get PDF
    Composites have been increasingly used in various structural components in the aerospace, marine, automotive, and wind energy sectors. Composites’ material characterization is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue is aimed at soliciting promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review and will only be considered for publication if they meet journal standards
    corecore