12,996 research outputs found

    Integrating damping and non-linearities in a vibration design process

    Get PDF
    Classical vibration design uses modes and transfer functions generated with the superposition principle to allow the verification of design objectives. If redesign is needed, one optimizes mass and stiffness in order to modify the transfer until the specification is met. Integrating damping and non-linearities in the optimization of detailed industrial models is however still considered a major difficulty, even though the physical mechanisms are well known. Approaches to handle viscoelastic damping and time domain modal damping are thus discussed. Distributed non-linearities, such as contact and friction, are becoming accessible to transient simulation, but lead to responses where modes are no longer defined. It is however illustrated that operational deflection shapes, associated with a singular value decomposition of the response, give similar information. Finally, a fundamental aspect of non-linear vibration simulation is the volume of output and the associated numerical cost. Model reduction is a key ingredient of practical approaches and a perspective on related issues is given

    A Review of Prosthetic Interface Stress Investigations

    Get PDF
    Over the last decade, numerous experimental and numerical analyses have been conducted to investigate the stress distribution between the residual limb and prosthetic socket of persons with lower limb amputation. The objectives of these analyses have been to improve our understanding of the residual limb/prosthetic socket system, to evaluate the influence of prosthetic design parameters and alignment variations on the interface stress distribution, and to evaluate prosthetic fit. The purpose of this paper is to summarize these experimental investigations and identify associated limitations. In addition, this paper presents an overview of various computer models used to investigate the residual limb interface, and discusses the differences and potential ramifications of the various modeling formulations. Finally, the potential and future applications of these experimental and numerical analyses in prosthetic design are presented

    Effect of Ductile Damage Evolution in Sheet Metal Forming: Experimental and Numerical Investigations

    Get PDF
    The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as necking, fracture, springback, buckling and wrinkling. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. In the first part of this work, we focus on the traditional identification of the constitutive law using oriented tensile tests (0°, 45°, and 90° with respect to the rolling direction). A Digital Image Correlation (DIC) method is used in order to measure the displacements on the surface of the specimen and to analyze the necking evolution and the instability along the shear band. Therefore, bulge tests involving a number of die shapes (circular and elliptic) were developed. In a second step, a mixed numerical–experimental method is used for the identification of the plastic behavior of the stainless steel metal sheet. The initial parameters of the inverse identification were extracted from a uniaxial tensile test. The optimization procedure uses a combination of a Monte-Carlo and a Levenberg-Marquardt algorithm. In the second part of this work, according to some results obtained by SEM (Scaning Electron Microscopy) of the crack zones on the tensile specimens, a Gurson Tvergaard Needleman (GTN) ductile model of damage has been selected for the numerical simulations. This model was introduced in order to give informations concerning crack initiations during hydroforming. At the end of the paper, experimental and numerical comparisons of sheet metal forming applications are presented and validate the proposed approach
    corecore