21,483 research outputs found

    On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis

    Get PDF
    In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    From the mainframe to the flesh: Pedagogical approaches to conceptualizing human experience in bio-modeling

    Get PDF
    The design of medical instrumentation is a vital aspect of Biomedical Engineering (BME) programs. Yet, no full-length study analyzing the consequence of pedagogical methods on a medical device’s final design has been conducted. Being that these technologies are created with a specific end-use in mind, an examination of instructional design is essential for ascertaining how the user has come to be understood by those drafting solutions on their behalf. As such, this thesis examines the ways that biomedical engineering programs conceptualize user experience through design instruction. It navigates essentialist questions like who is a user and evolves to investigate the theoretical crux of medical device making to ask why decisions are made and what apparatuses might inform these choices. Through this process, it discerns a lack of critical pedagogy in BME design curricula, and thus argues that biomedical engineering programs must take seriously the ideas of race, gender, and other social categories in the teaching of medical device design. This work begins by reflecting on the socio-historical relevance of medical devices. In doing so, it outlines health, education, and illness as value-laden, multi-dimensional notions that are often singularized. This piece contends that such singularization limits the reach and effectiveness of design instruction, reifying the belief that science is distinct from social meaning. It then reflects on the use of technology in the development of medical devices. Here, it offers a generational description of mechanical Computer Aided-Design (CAD)—a band of software used to transform 2D sketches into 3D digital models. Finally, through a series of semi-structured interviews with six recent graduates of two top ranked BME programs, this work develops the concept of exclusion as enactment to describe the catastrophic impacts exclusion can have for those underrepresented in currently utilized instructional frameworks

    Modular Human-in-the-loop Design Framework Based on Human Factors

    Get PDF
    Human-in-the-loop design framework introduced in this dissertation utilizes Digital Human Modeling (DHM) to incorporate Human Factors Engineering (HFE) design principles early in design process. It embodies scientific methods (e.g., mathematics) and artistic approaches (e.g., visualization) to assess human well-being and overall system performance. This framework focuses not only on ergonomics assessments but also actual design process including, but not limited to, concept development, structural integrity and digital prototyping. It addresses to three major limitations found in HFE literature and practices

    A model of brain morphological changes related to aging and Alzheimer's disease from cross-sectional assessments

    Get PDF
    In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed locally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The generative model is first estimated on a control population, then, for each subject, the markers are computed for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolution. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are more located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quiet high. In this context, the model can be used to generate plausible morphological trajectories associated with the disease. Our method gives two interpretable scalar imaging biomarkers assessing the effects of aging and disease on brain morphology at the individual and population level. These markers confirm an acceleration of apparent aging for Alzheimer's subjects and can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.Comment: NeuroImage, Elsevier, In pres

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor
    • …
    corecore