14,108 research outputs found

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Time-varying model identification for time-frequency feature extraction from EEG data

    Get PDF
    A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (ARX) models where the associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) algorithm is then applied to refine the model parameter estimates of the time-varying ARX model. The main features of the multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide important transient information on the inherent dynamics of nonstationary processes

    Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets

    Get PDF
    A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-varying modelling problem is then reduced to regression selection and parameter estimation, which can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one for an artificial signal and another for an EEG signal, are given to show the effectiveness and applicability of the new TVAR modelling method

    Probability-guaranteed set-membership state estimation for polynomially uncertain linear time-invariant systems

    Get PDF
    2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksConventional deterministic set-membership (SM) estimation is limited to unknown-but-bounded uncertainties. In order to exploit distributional information of probabilistic uncertainties, a probability-guaranteed SM state estimation approach is proposed for uncertain linear time-invariant systems. This approach takes into account polynomial dependence on probabilistic uncertain parameters as well as additive stochastic noises. The purpose is to compute, at each time instant, a bounded set that contains the actual state with a guaranteed probability. The proposed approach relies on the extended form of an observer representation over a sliding window. For the offline observer synthesis, a polynomial-chaos-based method is proposed to minimize the averaged H2 estimation performance with respect to probabilistic uncertain parameters. It explicitly accounts for the polynomial uncertainty structure, whilst most literature relies on conservative affine or polytopic overbounding. Online state estimation restructures the extended observer form, and constructs a Gaussian mixture model to approximate the state distribution. This enables computationally efficient ellipsoidal calculus to derive SM estimates with a predefined confidence level. The proposed approach preserves time invariance of the uncertain parameters and fully exploits the polynomial uncertainty structure, to achieve tighter SM bounds. This improvement is illustrated by a numerical example with a comparison to a deterministic zonotopic method.Peer ReviewedPostprint (author's final draft

    A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers

    Get PDF
    We present the first surrogate model for gravitational waveforms from the coalescence of precessing binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling numerical relativity waveforms without introducing phenomenological assumptions or approximations to general relativity. Motivated by GW150914, LIGO's first detection of gravitational waves from merging black holes, the model is built from a set of 276276 numerical relativity (NR) simulations with mass ratios q≤2q \leq 2, dimensionless spin magnitudes up to 0.80.8, and the restriction that the initial spin of the smaller black hole lies along the axis of orbital angular momentum. It produces waveforms which begin ∼30\sim 30 gravitational wave cycles before merger and continue through ringdown, and which contain the effects of precession as well as all ℓ∈{2,3}\ell \in \{2, 3\} spin-weighted spherical-harmonic modes. We perform cross-validation studies to compare the model to NR waveforms \emph{not} used to build the model, and find a better agreement within the parameter range of the model than other, state-of-the-art precessing waveform models, with typical mismatches of 10−310^{-3}. We also construct a frequency domain surrogate model (called NRSur4d2s_FDROM) which can be evaluated in 50 ms50\, \mathrm{ms} and is suitable for performing parameter estimation studies on gravitational wave detections similar to GW150914.Comment: 34 pages, 26 figure
    • …
    corecore