8,515 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Novel 129Xe Magnetic Resonance Imaging and Spectroscopy Measurements of Pulmonary Gas-Exchange

    Get PDF
    Gas-exchange is the primary function of the lungs and involves removing carbon dioxide from the body and exchanging it within the alveoli for inhaled oxygen. Several different pulmonary, cardiac and cardiovascular abnormalities have negative effects on pulmonary gas-exchange. Unfortunately, clinical tests do not always pinpoint the problem; sensitive and specific measurements are needed to probe the individual components participating in gas-exchange for a better understanding of pathophysiology, disease progression and response to therapy. In vivo Xenon-129 gas-exchange magnetic resonance imaging (129Xe gas-exchange MRI) has the potential to overcome these challenges. When participants inhale hyperpolarized 129Xe gas, it has different MR spectral properties as a gas, as it diffuses through the alveolar membrane and as it binds to red-blood-cells. 129Xe MR spectroscopy and imaging provides a way to tease out the different anatomic components of gas-exchange simultaneously and provides spatial information about where abnormalities may occur. In this thesis, I developed and applied 129Xe MR spectroscopy and imaging to measure gas-exchange in the lungs alongside other clinical and imaging measurements. I measured 129Xe gas-exchange in asymptomatic congenital heart disease and in prospective, controlled studies of long-COVID. I also developed mathematical tools to model 129Xe MR signals during acquisition and reconstruction. The insights gained from my work underscore the potential for 129Xe gas-exchange MRI biomarkers towards a better understanding of cardiopulmonary disease. My work also provides a way to generate a deeper imaging and physiologic understanding of gas-exchange in vivo in healthy participants and patients with chronic lung and heart disease

    ACOUSTIC SPEECH MARKERS FOR TRACKING CHANGES IN HYPOKINETIC DYSARTHRIA ASSOCIATED WITH PARKINSONā€™S DISEASE

    Get PDF
    Previous research has identified certain overarching features of hypokinetic dysarthria associated with Parkinsonā€™s Disease and found it manifests differently between individuals. Acoustic analysis has often been used to find correlates of perceptual features for differential diagnosis. However, acoustic parameters that are robust for differential diagnosis may not be sensitive to tracking speech changes. Previous longitudinal studies have had limited sample sizes or variable lengths between data collection. This study focused on using acoustic correlates of perceptual features to identify acoustic markers able to track speech changes in people with Parkinsonā€™s Disease (PwPD) over six months. The thesis presents how this study has addressed limitations of previous studies to make a novel contribution to current knowledge. Speech data was collected from 63 PwPD and 47 control speakers using an online podcast software at two time points, six months apart (T1 and T2). Recordings of a standard reading passage, minimal pairs, sustained phonation, and spontaneous speech were collected. Perceptual severity ratings were given by two speech and language therapists for T1 and T2, and acoustic parameters of voice, articulation and prosody were investigated. Two analyses were conducted: a) to identify which acoustic parameters can track perceptual speech changes over time and b) to identify which acoustic parameters can track changes in speech intelligibility over time. An additional attempt was made to identify if these parameters showed group differences for differential diagnosis between PwPD and control speakers at T1 and T2. Results showed that specific acoustic parameters in voice quality, articulation and prosody could differentiate between PwPD and controls, or detect speech changes between T1 and T2, but not both factors. However, specific acoustic parameters within articulation could detect significant group and speech change differences across T1 and T2. The thesis discusses these results, their implications, and the potential for future studies

    Colour technologies for content production and distribution of broadcast content

    Get PDF
    The requirement of colour reproduction has long been a priority driving the development of new colour imaging systems that maximise human perceptual plausibility. This thesis explores machine learning algorithms for colour processing to assist both content production and distribution. First, this research studies colourisation technologies with practical use cases in restoration and processing of archived content. The research targets practical deployable solutions, developing a cost-effective pipeline which integrates the activity of the producer into the processing workflow. In particular, a fully automatic image colourisation paradigm using Conditional GANs is proposed to improve content generalisation and colourfulness of existing baselines. Moreover, a more conservative solution is considered by providing references to guide the system towards more accurate colour predictions. A fast-end-to-end architecture is proposed to improve existing exemplar-based image colourisation methods while decreasing the complexity and runtime. Finally, the proposed image-based methods are integrated into a video colourisation pipeline. A general framework is proposed to reduce the generation of temporal flickering or propagation of errors when such methods are applied frame-to-frame. The proposed model is jointly trained to stabilise the input video and to cluster their frames with the aim of learning scene-specific modes. Second, this research explored colour processing technologies for content distribution with the aim to effectively deliver the processed content to the broad audience. In particular, video compression is tackled by introducing a novel methodology for chroma intra prediction based on attention models. Although the proposed architecture helped to gain control over the reference samples and better understand the prediction process, the complexity of the underlying neural network significantly increased the encoding and decoding time. Therefore, aiming at efficient deployment within the latest video coding standards, this work also focused on the simplification of the proposed architecture to obtain a more compact and explainable model

    Investigation of Inorganic Salt Hydrate Phase Change Materials for Thermal Energy Storage Integrated into Heat Pump Systems

    Get PDF
    Thermal energy storage (TES) is a promising technology for the Energy Transition. Low grade heat is valuable for many everyday applications: indoor heating and cooling, hot water, refrigeration, etc. Heat pumps (HPs) move heat up a thermal gradient (from cold to hot) with an input of energy. Integrating TES into a HP grants flexibility to dispatch the stored heat as needed. When operating a HP against a fluctuating temperature body (i.e., outdoor ambient air temperature), TES provides an isothermal heat source that enables more efficient HP operation to its reduce energy consumption without sacrificing thermal comfort. This work explores the thermodynamic limits of HP-TES and it was found that TES temperatures equal to the application temperature leads to the highest potential for energy savings and peak demand reduction. This HP-TES system was then modeled in a building thermal energy simulation where the same findings emerge: a TES temperature near the application temperature shows the highest potential. A common method of achieving an isothermal TES is to incorporate phase change materials (PCMs) that store heat through the enthalpy of phase change. Salt hydrates are valued for their high volumetric storage density and low cost. This work explores the Brunauer-Emmett-Teller method to model sodium sulfate, but this salt was found to be incompatible with this reduced order method. Salt hydrates also exhibit low thermal conductivity which limits their direct use in TES. This work develops salt hydrate-graphite composite PCMs with improved thermal conductivity, however a tradeoff between energy storage capacity and thermal power density was seen. The composite PCMs were experimentally tested in a TES device and the improved thermal properties demonstrate their potential for use in simple TES architectures. Overall, this work evaluated TES systems from a holistic perspective, spanning several orders of magnitude, both energetically and spatially.Ph.D

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Exploring QCD matter in extreme conditions with Machine Learning

    Full text link
    In recent years, machine learning has emerged as a powerful computational tool and novel problem-solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data-driven perspective to physics-driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data-driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.Comment: 146 pages,53 figure

    EXAMINING PROTEIN CONFORMATIONAL DYNAMICS USING COMPUTATIONAL TECHNIQUES: STUDIES ON PHOSPHATIDYLINOSITOL-3-KINASE AND THE SODIUM-IODIDE SYMPORTER

    Get PDF
    Experimental biophysics techniques used to study proteins, polymers of amino acids that comprise most therapeutic targets of human disease, face limitations in their ability to interrogate the continual structural fluctuations exhibited by these macromolecules in the context of their myriad cellular functions. This dissertation aims to illustrate case studies that demonstrate how protein conformational dynamics can be characterized using computational methods, yielding novel insights into their functional regulation and activity. Towards this end, the work presented here describes two specific membrane proteins of therapeutic relevance: Phosphoinositide 3-kinase (PI3KĪ±), and the Na+/I- symporter (NIS). The PI3KCA gene, encoding the catalytic subunit of the PI3KĪ± protein that phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to generate phosphatidylinositol-3,4,5-triphosphate (PIP3), is highly mutated in human cancer. As such, a deeper mechanistic understanding of PI3KĪ± could facilitate the development of novel chemotherapeutic approaches. The second chapter of this dissertation describes molecular dynamics (MD) simulations that were conducted to determine how PI3KĪ± conformations are influenced by physiological effectors and the nSH2 domain of a regulatory subunit, p85. The results reported here suggest that dynamic allostery plays a role in populating the catalytically competent conformation of PI3KĪ±. NIS, a thirteen-helix transmembrane protein found in the thyroid and other tissues, transports iodide, a required constituent of thyroid hormones T3 and T4. Despite extensive experimental information and clinical data, many mechanistic details about NIS remain unresolved. The third chapter of this dissertation describes the results of unbiased and enhanced-sampling MD simulations of inwardly and outwardly open models of bound NIS under an enforced ion gradient. Simulations of NIS in the absence or presence of perchlorate are also described. The work presented in this dissertation aims to add to our mechanistic understanding of NIS ion transport and elucidate conformational states that occur between the inward and outward transitions of NIS in the absence and presence of bound Na+ and I- ions, which can provide valuable insight into its physiological activity and inform therapeutic interventions. Taken together, these case studies demonstrate the ability of computational techniques to provide novel insights into the impact of structural dynamics on the functional regulation of therapeutically important biological macromolecules

    ON EXPRESSIVENESS, INFERENCE, AND PARAMETER ESTIMATION OF DISCRETE SEQUENCE MODELS

    Get PDF
    Huge neural autoregressive sequence models have achieved impressive performance across different applications, such as NLP, reinforcement learning, and bioinformatics. However, some lingering problems (e.g., consistency and coherency of generated texts) continue to exist, regardless of the parameter count. In the first part of this thesis, we chart a taxonomy of the expressiveness of various sequence model families (Ch 3). In particular, we put forth complexity-theoretic proofs that string latent-variable sequence models are strictly more expressive than energy-based sequence models, which in turn are more expressive than autoregressive sequence models. Based on these findings, we introduce residual energy-based sequence models, a family of energy-based sequence models (Ch 4) whose sequence weights can be evaluated efficiently, and also perform competitively against autoregressive models. However, we show how unrestricted energy-based sequence models can suffer from uncomputability; and how such a problem is generally unfixable without knowledge of the true sequence distribution (Ch 5). In the second part of the thesis, we study practical sequence model families and algorithms based on theoretical findings in the first part of the thesis. We introduce neural particle smoothing (Ch 6), a family of approximate sampling methods that work with conditional latent variable models. We also introduce neural finite-state transducers (Ch 7), which extend weighted finite state transducers with the introduction of mark strings, allowing scoring transduction paths in a finite state transducer with a neural network. Finally, we propose neural regular expressions (Ch 8), a family of neural sequence models that are easy to engineer, allowing a user to design flexible weighted relations using Marked FSTs, and combine these weighted relations together with various operations
    • ā€¦
    corecore