1,090 research outputs found

    A novel deep submicron bulk planar sizing strategy for low energy subthreshold standard cell libraries

    Get PDF
    Engineering andPhysical Science ResearchCouncil (EPSRC) and Arm Ltd for providing funding in the form of grants and studentshipsThis work investigates bulk planar deep submicron semiconductor physics in an attempt to improve standard cell libraries aimed at operation in the subthreshold regime and in Ultra Wide Dynamic Voltage Scaling schemes. The current state of research in the field is examined, with particular emphasis on how subthreshold physical effects degrade robustness, variability and performance. How prevalent these physical effects are in a commercial 65nm library is then investigated by extensive modeling of a BSIM4.5 compact model. Three distinct sizing strategies emerge, cells of each strategy are laid out and post-layout parasitically extracted models simulated to determine the advantages/disadvantages of each. Full custom ring oscillators are designed and manufactured. Measured results reveal a close correlation with the simulated results, with frequency improvements of up to 2.75X/2.43X obs erved for RVT/LVT devices respectively. The experiment provides the first silicon evidence of the improvement capability of the Inverse Narrow Width Effect over a wide supply voltage range, as well as a mechanism of additional temperature stability in the subthreshold regime. A novel sizing strategy is proposed and pursued to determine whether it is able to produce a superior complex circuit design using a commercial digital synthesis flow. Two 128 bit AES cores are synthesized from the novel sizing strategy and compared against a third AES core synthesized from a state-of-the-art subthreshold standard cell library used by ARM. Results show improvements in energy-per-cycle of up to 27.3% and frequency improvements of up to 10.25X. The novel subthreshold sizing strategy proves superior over a temperature range of 0 °C to 85 °C with a nominal (20 °C) improvement in energy-per-cycle of 24% and frequency improvement of 8.65X. A comparison to prior art is then performed. Valid cases are presented where the proposed sizing strategy would be a candidate to produce superior subthreshold circuits

    Process-induced skew reduction in nominal zero-skew clock trees

    Full text link
    Abstract — This work develops an analytic framework for clock tree analysis considering process variations that is shown to correspond well with Monte Carlo results. The analysis frame-work is used in a new algorithm that constructs deterministic nominal zero-skew clock trees that have reduced sensitivity to process variation. The new algorithm uses a sampling approach to perform route embedding during a bottom-up merging phase, but does not select the best embedding until the top-down phase. This results in clock trees that exhibit a mean skew reduction of 32.4 % on average and a standard deviation reduction of 40.7 % as verified by Monte Carlo. The average increase in total clock tree capacitance is less than 0.02%. I

    Modeling and Analysis of Large-Scale On-Chip Interconnects

    Get PDF
    As IC technologies scale to the nanometer regime, efficient and accurate modeling and analysis of VLSI systems with billions of transistors and interconnects becomes increasingly critical and difficult. VLSI systems impacted by the increasingly high dimensional process-voltage-temperature (PVT) variations demand much more modeling and analysis efforts than ever before, while the analysis of large scale on-chip interconnects that requires solving tens of millions of unknowns imposes great challenges in computer aided design areas. This dissertation presents new methodologies for addressing the above two important challenging issues for large scale on-chip interconnect modeling and analysis: In the past, the standard statistical circuit modeling techniques usually employ principal component analysis (PCA) and its variants to reduce the parameter dimensionality. Although widely adopted, these techniques can be very limited since parameter dimension reduction is achieved by merely considering the statistical distributions of the controlling parameters but neglecting the important correspondence between these parameters and the circuit performances (responses) under modeling. This dissertation presents a variety of performance-oriented parameter dimension reduction methods that can lead to more than one order of magnitude parameter reduction for a variety of VLSI circuit modeling and analysis problems. The sheer size of present day power/ground distribution networks makes their analysis and verification tasks extremely runtime and memory inefficient, and at the same time, limits the extent to which these networks can be optimized. Given today?s commodity graphics processing units (GPUs) that can deliver more than 500 GFlops (Flops: floating point operations per second). computing power and 100GB/s memory bandwidth, which are more than 10X greater than offered by modern day general-purpose quad-core microprocessors, it is very desirable to convert the impressive GPU computing power to usable design automation tools for VLSI verification. In this dissertation, for the first time, we show how to exploit recent massively parallel single-instruction multiple-thread (SIMT) based graphics processing unit (GPU) platforms to tackle power grid analysis with very promising performance. Our GPU based network analyzer is capable of solving tens of millions of power grid nodes in just a few seconds. Additionally, with the above GPU based simulation framework, more challenging three-dimensional full-chip thermal analysis can be solved in a much more efficient way than ever before

    Design and practical realization of polymorphic crosstalk circuits using 65nm TSMC PDK

    Get PDF
    Title from PDF of title page viewed January 14, 2020Thesis advisor: Mostafizur RahmanVitaIncludes bibliographical references (page 54-56)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City. 2019As the technology node scales down, the coupling capacitance between the adjacent metal lines increases. With an increase in this electrostatic coupling, the unwanted signal interference also increases, which is popularly called as Crosstalk. In conventional circuits, the Crosstalk affects either functionality or performance or both. Therefore the Crosstalk is always considered as detrimental to the circuits, and we always try to filter out the Crosstalk noise from signals. Crosstalk Computing Technology tries to astutely turn this unwanted coupling capacitance into computing principle for digital logic gates[1, 2]. The special feature of the crosstalk circuits is its inherent circuit mechanism to build polymorphic logic gates[3]. Our team has previously demonstrated various fundamental polymorphic logic circuits [1-6,16-18]. This thesis shows the design of the large-scale polymorphic crosstalk circuits such as Multiplier–Sorter, Multiplier–Sorter–Adder using the fundamental polymorphic gates, and also analyzes the Power, Performance, and Area (PPA) for these large-scale designs. Similar to the basic and complex polymorphic gates, the functionality of the large-scale polymorphic circuits can also be altered using the control signals. Owing to their multi-functional embodiment in a single circuit, polymorphic circuits find a myriad of useful applications such as reconfigurable system design, resource sharing, hardware security, and fault-tolerant circuit design, etc. [3]. Also, in this thesis, a lot of studies have been done on the variability (PVT analysis) of Crosstalk Circuits. This PVT variation analysis establishes the circuit design requirements in terms of coupling capacitances and fan-in limitation that allows reliable operation of the Crosstalk gates under Process, Voltage and Temperature variations. As an example, I also elaborate on the reason for which the full adder can’t be implemented as a single gate in the crosstalk circuit-style at lower technology nodes. Though we designed a variety of basic and complex logic gates and crosstalk polymorphic gates, the biggest question is “Will these crosstalk gates work reliably on silicon owing to their new circuit requirements and technological challenges?”. Trying to answer the above question, the whole thesis is mainly focused on the physical implementation of the crosstalk gates at 65nm. I will detail the steps that we have performed while designing the crosstalk circuits and their layouts, the challenges we faced while implementing the new circuit techniques using conventional design approaches and PDK, and their solutions, specifically during layout design and verification. The other potential application of crosstalk circuits is in non-linear analog circuits: Analog-to-Digital Converter (ADC) [4], Digital-to-Analog Converter (DAC), and Comparator. In this thesis, I have shown how the deterministic charge summation principle that is used in digital crosstalk gates can also be used to implement the non-linear analog circuits.Introduction -- Polymorphic Crosstalk circuit design -- Practical realization of Crosstalk circuits -- PVT variation analysis -- Difficulties or errors in layout design and full chip details -- Potential miscellaneous applications -- Conclusion and future wor

    Electrical Design for Manufacturability Solutions: Fast Systematic Variation Analysis and Design Enhancement Techniques

    Get PDF
    The primary objectives in this research are to develop computer-aided design (CAD) tools for Design for Manufacturability (DFM) solutions that enable designers to conduct more rapid and more accurate systematic variation analysis, with different design enhancement techniques. Four main CAD tools are developed throughout my thesis. The first CAD tool facilitates a quantitative study of the impact of systematic variations for different circuits' electrical and geometrical behavior. This is accomplished by automatically performing an extensive analysis of different process variations (lithography and stress) and their dependency on the design context. Such a tool helps to explore and evaluate the systematic variation impact on any type of design. Secondly, solutions in the industry focus on the "design and then fix philosophy", or "fix during design philosophy", whereas the next CAD tool involves the "fix before design philosophy". Here, the standard cell library is characterized in different design contexts, different resolution enhancement techniques, and different process conditions, generating a fully DFM-aware standard cell library using a newly developed methodology that dramatically reduce the required number of silicon simulations. Several experiments are conducted on 65nm and 45nm designs, and demonstrate more robust and manufacturable designs that can be implemented by using the DFM-aware standard cell library. Thirdly, a novel electrical-aware hotspot detection solution is developed by using a device parameter-based matching technique since the state-of-the-art hotspot detection solutions are all geometrical based. This CAD tool proposes a new philosophy by detecting yield limiters, also known as hotspots, through the model parameters of the device, presented in the SPICE netlist. This novel hotspot detection methodology is tested and delivers extraordinary fast and accurate results. Finally, the existing DFM solutions, mainly address the digital designs. Process variations play an increasingly important role in the success of analog circuits. Knowledge of the parameter variances and their contribution patterns is crucial for a successful design process. This information is valuable to find solutions for many problems in design, design automation, testing, and fault tolerance. The fourth CAD solution, proposed in this thesis, introduces a variability-aware DFM solution that detects, analyze, and automatically correct hotspots for analog circuits
    corecore