595 research outputs found

    Time-frequency analysis of normal and abnormal biological signals

    Get PDF
    Due to the non-stationary, multicomponent nature of biomedical signals, the use of time-frequency analysis can be inevitable for these signals. The choice of the proper time-frequency distribution (TFD) that can reveal the exact multicomponent structure of biological signals is vital in many applications, including the diagnosis of medical abnormalities. In this paper, the instantaneous frequency (IF) estimation using four well-known TFDs is applied for analyzing biological signals. These TFDs are: the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CWD), the Exponential T-distribution (ETD) and the Hyperbolic T-distribution (HTD). Their performance over normal and abnormal biological signals as well as over multicomponent frequency modulation (FM) signals in additive Gaussian noise was compared. Moreover, the feasibility of utilizing the wavelet transform (WT) in IF estimation is also studied. The biological signals considered in this work are the surface electromyogram (SEMG) with the presence of ECG noise and abnormal cardiac signals. The abnormal cardiac signals were taken from a patient with malignant ventricular arrhythmia, and a patient with supraventricular arrhythmia. Simulation results showed that the HTD has a superior performance, in terms of resolution and cross-terms reduction, as compared to other time-frequency distributions

    A Review of EMG Techniques for Detection of Gait Disorders

    Get PDF
    Electromyography (EMG) is a commonly used technique to record myoelectric signals, i.e., motor neuron signals that originate from the central nervous system (CNS) and synergistically activate groups of muscles resulting in movement. EMG patterns underlying movement, recorded using surface or needle electrodes, can be used to detect movement and gait abnormalities. In this review article, we examine EMG signal processing techniques that have been applied for diagnosing gait disorders. These techniques span from traditional statistical tests to complex machine learning algorithms. We particularly emphasize those techniques are promising for clinical applications. This study is pertinent to both medical and engineering research communities and is potentially helpful in advancing diagnostics and designing rehabilitation devices

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications

    Sample Entropy of sEMG Signals at Different Stages of Rectal Cancer Treatment

    Get PDF
    Information theory provides a spectrum of nonlinear methods capable of grasping an internal structure of a signal together with an insight into its complex nature. In this work, we discuss the usefulness of the selected entropy techniques for a description of the information carried by the surface electromyography signals during colorectal cancer treatment. The electrical activity of the external anal sphincter can serve as a potential source of knowledge of the actual state of the patient who underwent a common surgery for rectal cancer in the form of anterior or lower anterior resection. The calculation of Sample entropy parameters has been extended to multiple time scales in terms of the Multiscale Sample Entropy. The specific values of the entropy measures and their dependence on the time scales were analyzed with regard to the time elapsed since the operation, the type of surgical treatment and also the different depths of the rectum canal. The Mann–Whitney U test and Anova Friedman statistics indicate the statistically significant differences among all of stages of treatment and for all consecutive depths of rectum area for the estimated Sample Entropy. The further analysis at the multiple time scales signify the substantial differences among compared stages of treatment in the group of patients who underwent the lower anterior resection

    Trunk muscle activation and coactivation changes in patients with multiple myeloma undergoing vertebral consolidation surgery: a study performed by using movement analysis technologies

    Get PDF
    Multiple myeloma (MM) is a neoplasm characterized by the proliferation of plasma cells, which expand at the level of the bone marrow causing the typical multiple osteolytic lesions.Patients with multiple spinal injuries often complain of pain and stiffness that limit motility and activities of daily and work life.The current scientific scenario supports the positive effects of vertebroplasty on patients' lives. As a matter of fact, the literature shows that such procedure gives patients important and lasting pain relief.This study aims to test the above hypothesis and to objectify how spinal motility and stability vary after vertebroplasty surgery.Multiple myeloma (MM) is a neoplasm characterized by the proliferation of plasma cells, which expand at the level of the bone marrow causing the typical multiple osteolytic lesions.Patients with multiple spinal injuries often complain of pain and stiffness that limit motility and activities of daily and work life.The current scientific scenario supports the positive effects of vertebroplasty on patients' lives. As a matter of fact, the literature shows that such procedure gives patients important and lasting pain relief.This study aims to test the above hypothesis and to objectify how spinal motility and stability vary after vertebroplasty surgery

    SDAV 1.0: A Low-Cost sEMG Data Acquisition & Processing System For Rehabilitatio

    Get PDF
    Over the last two decades, myoelectric signals have been widely used in fields including rehabilitation devices and human-machine interfaces. This study aimed to develop an algorithm for surface electromyography (sEMG) data acquisition utilizing low-cost hardware and validate its performance using English vowels as silent speech content. The sEMG data were collected from the three facial muscles of one healthy subject. The sEMG signals were pre-processed, and various time-domain and statistical features were extracted in real time. The raw data and features were then used to train and test three customized machine learning classifiers: k-nearest neighbor (KNN), support vector machine (SVM), and artificial neural network (ANN). All customized classifiers achieved almost equivalent accuracy rates of 0.83 ± 0.01 in recognizing the English vowels with an improvement of 27.27% (KNN), 3.75% (SVM), and 51.85% (ANN) utilizing the same low-cost data acquisition hardware. Our findings are substantially closers to the results of commercial hardware setups, which raise the possibility of potential usage of low-cost sEMG data acquisition systems with the proposed algorithm in place of commercial hardware setups for rehabilitation devices and other related sectors of human-machine interaction
    corecore