307 research outputs found

    Trajectory optimization based on recursive B-spline approximation for automated longitudinal control of a battery electric vehicle

    Get PDF
    Diese Arbeit beschreibt ein neuartiges Verfahren zur linearen und nichtlinearen gewichteten Kleinste-Quadrate-Approximation einer unbeschränkten Anzahl von Datenpunkten mit einer B-Spline-Funktion. Das entwickelte Verfahren basiert auf iterativen Algorithmen zur Zustandsschätzung und sein Rechenaufwand nimmt linear mit der Anzahl der Datenpunkte zu. Das Verfahren ermöglicht eine Verschiebung des beschränkten Definitionsbereichs einer B-Spline-Funktion zur Laufzeit, sodass der aktuell betrachtete Datenpunkt ungeachtet des anfangs gewählten Definitionsbereichs bei der Approximation berücksichtigt werden kann. Zudem ermöglicht die Verschiebeoperation die Reduktion der Größen der Matrizen in den Zustandsschätzern zur Senkung des Rechenaufwands sowohl in Offline-Anwendungen, in denen alle Datenpunkte gleichzeitig zur Verarbeitung vorliegen, als auch in Online-Anwendungen, in denen in jedem Zeitschritt weitere Datenpunkte beobachtet werden. Das Trajektorienoptimierungsproblem wird so formuliert, dass das Approximationsverfahren mit Datenpunkten aus Kartendaten eine B-Spline-Funktion berechnet, die die gewünschte Geschwindigkeitstrajektorie bezüglich der Zeit repräsentiert. Der Rechenaufwand des resultierenden direkten Trajektorienoptimierungsverfahrens steigt lediglich linear mit der unbeschränkten zeitlichen Trajektorienlänge an. Die Kombination mit einem adaptiven Modell des Antriebsstrangs eines batterie-elektrischen Fahrzeugs mit festem Getriebeübersetzungsverhältnis ermöglicht die Optimierung von Geschwindigkeitstrajektorien hinsichtlich Fahrzeit, Komfort und Energieverbrauch. Das Trajektorienoptimierungsverfahren wird zu einem Fahrerassistenzsystem für die automatisierte Fahrzeuglängsführung erweitert, das simulativ und in realen Erprobungsfahrten getestet wird. Simulierte Fahrten auf der gewählten Referenzstrecke benötigten bis zu 3,4 % weniger Energie mit der automatisierten Längsführung als mit einem menschlichen Fahrer bei derselben Durchschnittsgeschwindigkeit. Für denselben Energieverbrauch erzielt die automatisierte Längsführung eine 2,6 % höhere Durchschnittsgeschwindigkeit als ein menschlicher Fahrer

    Real-time Autonomous Cruise Control of Connected Plug-in Hybrid Electric Vehicles Under Uncertainty

    Get PDF
    Advances in embedded digital computing and communication networks have enabled the development of automated driving systems. Autonomous cruise control (ACC) and cooperative ACC (CACC) systems are two popular types of these technologies, which can be implemented to enhance safety, traffic flow, driving comfort and energy economy. This PhD thesis develops robust and adaptive controllers for plug-in hybrid electric vehicles (PHEVs), with the Toyota Plug-in Prius as the baseline vehicle, in order to enable them to perform safe and robust car-following and platooning with improved vehicle performance. Three controllers are designed here to achieve three main goals. The first goal of this thesis is the development of a real-time Ecological ACC (Eco-ACC) system for PHEVs, that is robust to uncertainties. A novel adaptive tube-based nonlinear model predictive control (AT-NMPC) approach to the design of Eco-ACC systems is proposed. Through utilizing two separate models to define the constrained optimal control problem, this method takes into account uncertainties, modeling errors and delayed data in the design of the controller and guaranties robust constraint handling for the assumed uncertainty bounds. {In addition, it adapts to changes in order to improve the control performance when possible.} Furthermore, a Newton/GMRES fast solver is employed to implement the designed AT-NMPC in real-time. The second goal is the development of a real-time Ecological CACC (Eco-CACC) system that can simultaneously satisfy the frequency-domain and time-domain platooning criteria. A novel distributed reference governor (RG) approach to the constraint handling of vehicle platoons equipped with CACC is presented. RG sits behind the controlled string stable system and keeps the output inside the defined constraints. Furthermore, to improve the platoon's energy economy, a controller is presented for the leader's control using NMPC method, assuming it is a PHEV. The third objective of this thesis is the control of heterogeneous platoons using an adaptive control approach. A direct model reference adaptive controller (MRAC) is designed that enforces a string stable behavior on the vehicle platoon despite different dynamical models of the platoon members and the external disturbances acting on the systems. The proposed method estimates the controller coefficients on-line to adapt to the disturbances such as wind, changing road grade and also to different vehicle dynamic behaviors. The main purpose of all three controllers is to maintain the driving safety of connected vehicles in car-following and platooning while being real-time implementable. In addition, when there is a possibility for performance enhancement without sacrificing safety, ecological improvement is also considered. For each designed controller, Model-in-the-Loop (MIL) simulations and Hardware-in-the-Loop (HIL) experiments are performed using high-fidelity vehicle models in order to validate controllers' performance and ensure their real-time implementation capability

    Reliable autonomous vehicle control - a chance constrained stochastic MPC approach

    Get PDF
    In recent years, there is a growing interest in the development of systems capable of performing tasks with a high level of autonomy without human supervision. This kind of systems are known as autonomous systems and have been studied in many industrial applications such as automotive, aerospace and industries. Autonomous vehicle have gained a lot of interest in recent years and have been considered as a viable solution to minimize the number of road accidents. Due to the complexity of dynamic calculation and the physical restrictions in autonomous vehicle, for example, deterministic model predictive control is an attractive control technique to solve the problem of path planning and obstacle avoidance. However, an autonomous vehicle should be capable of driving adaptively facing deterministic and stochastic events on the road. Therefore, control design for the safe, reliable and autonomous driving should consider vehicle model uncertainty as well uncertain external influences. The stochastic model predictive control scheme provides the most convenient scheme for the control of autonomous vehicles on moving horizons, where chance constraints are to be used to guarantee the reliable fulfillment of trajectory constraints and safety against static and random obstacles. To solve this kind of problems is known as chance constrained model predictive control. Thus, requires the solution of a chance constrained optimization on moving horizon. According to the literature, the major challenge for solving chance constrained optimization is to calculate the value of probability. As a result, approximation methods have been proposed for solving this task. In the present thesis, the chance constrained optimization for the autonomous vehicle is solved through approximation method, where the probability constraint is approximated by using a smooth parametric function. This methodology presents two approaches that allow the solution of chance constrained optimization problems in inner approximation and outer approximation. The aim of this approximation methods is to reformulate the chance constrained optimizations problems as a sequence of nonlinear programs. Finally, three case studies of autonomous vehicle for tracking and obstacle avoidance are presented in this work, in which three levels probability of reliability are considered for the optimal solution.Tesi
    corecore