3,563 research outputs found

    Discovery and recognition of motion primitives in human activities

    Get PDF
    We present a novel framework for the automatic discovery and recognition of motion primitives in videos of human activities. Given the 3D pose of a human in a video, human motion primitives are discovered by optimizing the `motion flux', a quantity which captures the motion variation of a group of skeletal joints. A normalization of the primitives is proposed in order to make them invariant with respect to a subject anatomical variations and data sampling rate. The discovered primitives are unknown and unlabeled and are unsupervisedly collected into classes via a hierarchical non-parametric Bayes mixture model. Once classes are determined and labeled they are further analyzed for establishing models for recognizing discovered primitives. Each primitive model is defined by a set of learned parameters. Given new video data and given the estimated pose of the subject appearing on the video, the motion is segmented into primitives, which are recognized with a probability given according to the parameters of the learned models. Using our framework we build a publicly available dataset of human motion primitives, using sequences taken from well-known motion capture datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields including video analysis, human inspired motion generation, learning by demonstration, intuitive human-robot interaction, and human behavior analysis

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Learning Human Motion Models for Long-term Predictions

    Full text link
    We propose a new architecture for the learning of predictive spatio-temporal motion models from data alone. Our approach, dubbed the Dropout Autoencoder LSTM, is capable of synthesizing natural looking motion sequences over long time horizons without catastrophic drift or motion degradation. The model consists of two components, a 3-layer recurrent neural network to model temporal aspects and a novel auto-encoder that is trained to implicitly recover the spatial structure of the human skeleton via randomly removing information about joints during training time. This Dropout Autoencoder (D-AE) is then used to filter each predicted pose of the LSTM, reducing accumulation of error and hence drift over time. Furthermore, we propose new evaluation protocols to assess the quality of synthetic motion sequences even for which no ground truth data exists. The proposed protocols can be used to assess generated sequences of arbitrary length. Finally, we evaluate our proposed method on two of the largest motion-capture datasets available to date and show that our model outperforms the state-of-the-art on a variety of actions, including cyclic and acyclic motion, and that it can produce natural looking sequences over longer time horizons than previous methods

    Nonparametric inference of doubly stochastic Poisson process data via the kernel method

    Full text link
    Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS352 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Modeling variation of human motion

    Get PDF
    The synthesis of realistic human motion with large variations and different styles has a growing interest in simulation applications such as the game industry, psychological experiments, and ergonomic analysis. The statistical generative models are used by motion controllers in our motion synthesis framework to create new animations for different scenarios. Data-driven motion synthesis approaches are powerful tools for producing high-fidelity character animations. With the development of motion capture technologies, more and more motion data are publicly available now. However, how to efficiently reuse a large amount of motion data to create new motions for arbitrary scenarios poses challenges, especially for unsupervised motion synthesis. This thesis presents a series of works that analyze and model the variations of human motion data. The goal is to learn statistical generative models to create any number of new human animations with rich variations and styles. The work of the thesis will be presented in three main chapters. We first explore how variation is represented in motion data. Learning a compact latent space that can expressively contain motion variation is essential for modeling motion data. We propose a novel motion latent space learning approach that can intrinsically tackle the spatialtemporal properties of motion data. Secondly, we present our Morphable Graph framework for human motion modeling and synthesis for assembly workshop scenarios. A series of studies have been conducted to apply statistical motion modeling and synthesis approaches for complex assembly workshop use cases. Learning the distribution of motion data can provide a compact representation of motion variations and convert motion synthesis tasks to optimization problems. Finally, we show how the style variations of human activities can be modeled with a limited number of examples. Natural human movements display a rich repertoire of styles and personalities. However, it is difficult to get enough examples for data-driven approaches. We propose a conditional variational autoencoder (CVAE) to combine large variations in the neutral motion database and style information from a limited number of examples.Die Synthese realistischer menschlicher Bewegungen mit großen Variationen und unterschiedlichen Stilen ist für Simulationsanwendungen wie die Spieleindustrie, psychologische Experimente und ergonomische Analysen von wachsendem Interesse. Datengetriebene Bewegungssyntheseansätze sind leistungsstarke Werkzeuge für die Erstellung realitätsgetreuer Charakteranimationen. Mit der Entwicklung von Motion-Capture-Technologien sind nun immer mehr Motion-Daten öffentlich verfügbar. Die effiziente Wiederverwendung einer großen Menge von Motion-Daten zur Erstellung neuer Bewegungen für beliebige Szenarien stellt jedoch eine Herausforderung dar, insbesondere für die unüberwachte Bewegungssynthesemethoden. Das Lernen der Verteilung von Motion-Daten kann eine kompakte Repräsentation von Bewegungsvariationen liefern und Bewegungssyntheseaufgaben in Optimierungsprobleme umwandeln. In dieser Dissertation werden eine Reihe von Arbeiten vorgestellt, die die Variationen menschlicher Bewegungsdaten analysieren und modellieren. Das Ziel ist es, statistische generative Modelle zu erlernen, um eine beliebige Anzahl neuer menschlicher Animationen mit reichen Variationen und Stilen zu erstellen. In unserem Bewegungssynthese-Framework werden die statistischen generativen Modelle von Bewegungscontrollern verwendet, um neue Animationen für verschiedene Szenarien zu erstellen. Die Arbeit in dieser Dissertation wird in drei Hauptkapiteln vorgestellt. Wir untersuchen zunächst, wie Variation in Bewegungsdaten dargestellt wird. Das Erlernen eines kompakten latenten Raums, der Bewegungsvariationen ausdrucksvoll enthalten kann, ist für die Modellierung von Bewegungsdaten unerlässlich. Wir schlagen einen neuartigen Ansatz zum Lernen des latenten Bewegungsraums vor, der die räumlich-zeitlichen Eigenschaften von Bewegungsdaten intrinsisch angehen kann. Zweitens stellen wir unser Morphable Graph Framework für die menschliche Bewegungsmodellierung und -synthese für Montage-Workshop- Szenarien vor. Es wurde eine Reihe von Studien durchgeführt, um statistische Bewegungsmodellierungs und syntheseansätze für komplexe Anwendungsfälle in Montagewerkstätten anzuwenden. Schließlich zeigen wir anhand einer begrenzten Anzahl von Beispielen, wie die Stilvariationen menschlicher Aktivitäten modelliertwerden können. Natürliche menschliche Bewegungen weisen ein reiches Repertoire an Stilen und Persönlichkeiten auf. Es ist jedoch schwierig, genügend Beispiele für datengetriebene Ansätze zu erhalten. Wir schlagen einen Conditional Variational Autoencoder (CVAE) vor, um große Variationen in der neutralen Bewegungsdatenbank und Stilinformationen aus einer begrenzten Anzahl von Beispielen zu kombinieren. Wir zeigen, dass unser Ansatz eine beliebige Anzahl von natürlich aussehenden Variationen menschlicher Bewegungen mit einem ähnlichen Stil wie das Ziel erzeugen kann
    corecore