4,520 research outputs found

    The pp-Center Problem in Tree Networks Revisited

    Get PDF
    We present two improved algorithms for weighted discrete pp-center problem for tree networks with nn vertices. One of our proposed algorithms runs in O(nlogn+plog2nlog(n/p))O(n \log n + p \log^2 n \log(n/p)) time. For all values of pp, our algorithm thus runs as fast as or faster than the most efficient O(nlog2n)O(n\log^2 n) time algorithm obtained by applying Cole's speed-up technique [cole1987] to the algorithm due to Megiddo and Tamir [megiddo1983], which has remained unchallenged for nearly 30 years. Our other algorithm, which is more practical, runs in O(nlogn+p2log2(n/p))O(n \log n + p^2 \log^2(n/p)) time, and when p=O(n)p=O(\sqrt{n}) it is faster than Megiddo and Tamir's O(nlog2nloglogn)O(n \log^2n \log\log n) time algorithm [megiddo1983]

    An optimal algorithm for the weighted backup 2-center problem on a tree

    Full text link
    In this paper, we are concerned with the weighted backup 2-center problem on a tree. The backup 2-center problem is a kind of center facility location problem, in which one is asked to deploy two facilities, with a given probability to fail, in a network. Given that the two facilities do not fail simultaneously, the goal is to find two locations, possibly on edges, that minimize the expected value of the maximum distance over all vertices to their closest functioning facility. In the weighted setting, each vertex in the network is associated with a nonnegative weight, and the distance from vertex uu to vv is weighted by the weight of uu. With the strategy of prune-and-search, we propose a linear time algorithm, which is asymptotically optimal, to solve the weighted backup 2-center problem on a tree.Comment: 14 pages, 4 figure

    Improvements on the k-center problem for uncertain data

    Full text link
    In real applications, there are situations where we need to model some problems based on uncertain data. This leads us to define an uncertain model for some classical geometric optimization problems and propose algorithms to solve them. In this paper, we study the kk-center problem, for uncertain input. In our setting, each uncertain point PiP_i is located independently from other points in one of several possible locations {Pi,1,,Pi,zi}\{P_{i,1},\dots, P_{i,z_i}\} in a metric space with metric dd, with specified probabilities and the goal is to compute kk-centers {c1,,ck}\{c_1,\dots, c_k\} that minimize the following expected cost Ecost(c1,,ck)=RΩprob(R)maxi=1,,nminj=1,kd(P^i,cj)Ecost(c_1,\dots, c_k)=\sum_{R\in \Omega} prob(R)\max_{i=1,\dots, n}\min_{j=1,\dots k} d(\hat{P}_i,c_j) here Ω\Omega is the probability space of all realizations R={P^1,,P^n}R=\{\hat{P}_1,\dots, \hat{P}_n\} of given uncertain points and prob(R)=i=1nprob(P^i).prob(R)=\prod_{i=1}^n prob(\hat{P}_i). In restricted assigned version of this problem, an assignment A:{P1,,Pn}{c1,,ck}A:\{P_1,\dots, P_n\}\rightarrow \{c_1,\dots, c_k\} is given for any choice of centers and the goal is to minimize EcostA(c1,,ck)=RΩprob(R)maxi=1,,nd(P^i,A(Pi)).Ecost_A(c_1,\dots, c_k)=\sum_{R\in \Omega} prob(R)\max_{i=1,\dots, n} d(\hat{P}_i,A(P_i)). In unrestricted version, the assignment is not specified and the goal is to compute kk centers {c1,,ck}\{c_1,\dots, c_k\} and an assignment AA that minimize the above expected cost. We give several improved constant approximation factor algorithms for the assigned versions of this problem in a Euclidean space and in a general metric space. Our results significantly improve the results of \cite{guh} and generalize the results of \cite{wang} to any dimension. Our approach is to replace a certain center point for each uncertain point and study the properties of these certain points. The proposed algorithms are efficient and simple to implement

    Center location problems on tree graphs with subtree-shaped customers

    Get PDF
    We consider the p-center problem on tree graphs where the customers are modeled as continua subtrees. We address unweighted and weighted models as well as distances with and without addends. We prove that a relatively simple modification of Handler’s classical linear time algorithms for unweighted 1- and 2-center problems with respect to point customers, linearly solves the unweighted 1- and 2-center problems with addends of the above subtree customer model. We also develop polynomial time algorithms for the p-center problems based on solving covering problems and searching over special domains

    Generalized centrality in trees

    Get PDF
    In 1982, Slater defined path subgraph analogues to the center, median, and (branch or branchweight) centroid of a tree. We define three families of central substructures of trees, including three types of central subtrees of degree at most D that yield the center, median, and centroid for D = 0 and Slater's path analogues for D = 2. We generalize these results concerning paths and include proofs that each type of generalized center and generalized centroid is unique. We also present algorithms for finding one or all generalized central substructures of each type.

    The Weighted k-Center Problem in Trees for Fixed k

    Get PDF
    We present a linear time algorithm for the weighted k-center problem on trees for fixed k. This partially settles the long-standing question about the lower bound on the time complexity of the problem. The current time complexity of the best-known algorithm for the problem with k as part of the input is O(n log n) by Wang et al. [Haitao Wang and Jingru Zhang, 2018]. Whether an O(n) time algorithm exists for arbitrary k is still open

    An O(n log n)-Time Algorithm for the k-Center Problem in Trees

    Get PDF
    We consider a classical k-center problem in trees. Let T be a tree of n vertices and every vertex has a nonnegative weight. The problem is to find k centers on the edges of T such that the maximum weighted distance from all vertices to their closest centers is minimized. Megiddo and Tamir (SIAM J. Comput., 1983) gave an algorithm that can solve the problem in O(n log^2 n) time by using Cole\u27s parametric search. Since then it has been open for over three decades whether the problem can be solved in O(n log n) time. In this paper, we present an O(n log n) time algorithm for the problem and thus settle the open problem affirmatively
    corecore