313 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Statistical shape analysis of neuroanatomical structures based on spherical wavelet transformation

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2008.Includes bibliographical references.Evidence suggests that morphological changes of neuroanatomical structures may reflect abnormalities in neurodevelopment, or relate to a variety of disorders, such as schizophrenia and Alzheimer's disease (AD). Advances in high-resolution Magnetic Resonance Imaging (MRI) techniques allow us to study these alterations of brain structures in vivo. Previous work in studying the shape variations of brain structures has provided additional localized information compared with traditional volume-based study. However, challenges remain in finding an accurate shape presentation and conducting shape analysis with sound statistical principles. In this work, we develop methods for automatically extracting localized and multi-scale shape features and conducting statistical shape analysis of neuroanatomical structures obtained from MR images. We first develop a procedure to extract multi-scale shape features of brain structures using biorthogonal spherical wavelets. Using this wavelet-based shape representation, we build multi-scale shape models and study the localized cortical folding variations in a normal population using Principal Component Analysis (PCA). We then build a shape-based classification framework for detecting pathological changes of cortical surfaces using advanced classification methods, such as predictive Automatic Relevance Determination (pred-ARD), and demonstrate promising results in patient/control group comparison studies. Thirdly, we develop a nonlinear temporal model for studying the temporal order and regional difference of cortical folding development based on this shape representation. Furthermore, we develop a shape-guided segmentation method to improve the segmentation of sub-cortical structures, such as hippocampus, by using shape constraints obtained in the wavelet domain.(cont.) Finally, we improve upon the proposed wavelet-based shape representation by adopting a newly developed over-complete spherical wavelet transformation and demonstrate its utility in improving the accuracy and stability of shape representations. By using these shape representations and statistical analysis methods, we have demonstrated promising results in localizing shape changes of neuroanatomical structures related to aging, neurological diseases, and neurodevelopment at multiple spatial scales. Identification of these shape changes could potentially lead to more accurate diagnoses and improved understanding of neurodevelopment and neurological diseases.by Peng Yu.Ph.D

    Construction of 4D high-definition cortical surface atlases of infants: Methods and applications

    Get PDF
    In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two years of life, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at 7 time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development

    Convergence of cortical types and functional motifs in the human mesiotemporal lobe

    Get PDF
    The mesiotemporal lobe (MTL) is implicated in many cognitive processes, is compromised in numerous brain disorders, and exhibits a gradual cytoarchitectural transition from six-layered parahippocampal isocortex to three-layered hippocampal allocortex. Leveraging an ultra-high-resolution histological reconstruction of a human brain, our study showed that the dominant axis of MTL cytoarchitectural differentiation follows the iso-to-allocortical transition and depth-specific variations in neuronal density. Projecting the histology-derived MTL model to in-vivo functional MRI, we furthermore determined how its cytoarchitecture underpins its intrinsic effective connectivity and association to large-scale networks. Here, the cytoarchitectural gradient was found to underpin intrinsic effective connectivity of the MTL, but patterns differed along the anterior-posterior axis. Moreover, while the iso-to-allocortical gradient parametrically represented the multiple-demand relative to task-negative networks, anterior-posterior gradients represented transmodal versus unimodal networks. Our findings establish that the combination of micro- and macrostructural features allow the MTL to represent dominant motifs of whole-brain functional organisation

    Human Body Model Morphing for Assessment of Crash Rib Fracture Risk for the Population of Car Occupants

    Get PDF
    Fractured ribs are prevalent injury outcomes for vehicle occupants involved in crashes. Sex, age, and anthropometry of an occupant influences the risk to sustain rib fractures.The SAFER human body model (SHBM) represents an average sized male and includes a detailed ribcage model that has been validated for prediction of rib fracture risk in virtual crash simulations. Developments in parametric morphing of human body models have enabled re-shaping the SHBM to represent a wide range of body sizes for both adult males and females which can influence kinematic and injury risk predictions. The aim for this thesis was to enable the assessment of crash kinematics and rib fracture risk for the population of occupants by morphing the SHBM. Research was performed within objectives that included: providing a definition of the occupant population, creating morphed versions of the SHBM (MHBMs) and validating MHBM crash kinematic and rib fracture risk predictions within the defined population, develop a method to efficiently compute rib fracture risk across the population, and investigate factors beyond morphing that influences MHBM rib fracture risk predictions.The population definition includes 90\ua0% of the U.S.-population in terms of male and female height and weight variability. For validation, parametric morphing was used to create MHBMs geometrically matching age, sex, height, and weight of 22 human subjects in previous crash tests. Rib fracture risk and kinematic predictions from MHBMs were validated by comparison to test results and MHBMs showed good correlation for kinematics and had acceptable utility to predict rib fracture outcomes. However, the rib fracture risk for the most vulnerable, predominantly older, occupants was underestimated. One reason can be rib cortical bone microstructural defects, that are not represented by current SHBM rib material modeling.To compute population rib fracture risk in crashes, a metamodeling method based on 25 differently sized MHBMs of each sex was recommended. Using this metamodeling method it was also identified that seven selected MHBMs of each sex can be used to predict the population risk across two specific crash scenarios. This indicates a possibility to identify a small family of MHBMs that are generally representative of population rib fracture risk in future work.For further improving rib fracture risk predictions, a new rib fracture risk function was developed based on human rib test results. The new function is more sensitive to age compared to previous risk functions. Additionally, it was identified that the individual variability in rib cross-sectional width, as well as cortical bone thickness and material properties all substantially influence rib fracture risk predictions. Including the individual variability in these influential parameters in MHBM models will improve the capability of MHBMs to predict the rib fracture risk variability that exists in the population of occupants independently of sex, height, and weight.It is concluded that MHBMs representing geometrical shape trends due to height, weight and sex, and individual rib local variability can be used to assess kinematics and rib fracture risk for wide range of males and females of different sizes. However, more research is needed to accurately predict the risk for the most vulnerable, predominantly older occupants

    Towards Individualized Transcranial Electric Stimulation Therapy through Computer Simulation

    Get PDF
    Transkranielle Elektrostimulation (tES) beschreibt eine Gruppe von Hirnstimulationstechniken, die einen schwachen elektrischen Strom über zwei nicht-invasiv am Kopf angebrachten Elektroden applizieren. Handelt es sich dabei um einen Gleichstrom, spricht man von transkranieller Gleichstromstimulation, auch tDCS abgekürzt. Die allgemeine Zielstellung aller Hirnstimulationstechniken ist Hirnfunktion durch ein Verstärken oder Dämpfen von Hirnaktivität zu beeinflussen. Unter den Stimulationstechniken wird die transkranielle Gleichstromstimulation als ein adjuvantes Werkzeug zur Unterstützung der mikroskopischen Reorganisation des Gehirnes in Folge von Lernprozessen und besonders der Rehabilitationstherapie nach einem Schlaganfall untersucht. Aktuelle Herausforderungen dieser Forschung sind eine hohe Variabilität im erreichten Stimulationseffekt zwischen den Probanden sowie ein unvollständiges Verständnis des Zusammenspiels der der Stimulation zugrundeliegenden Mechanismen. Als Schlüsselkomponente für das Verständnis der Stimulationsmechanismen wird das zwischen den Elektroden im Kopf des Probanden aufgebaute elektrische Feld erachtet. Einem grundlegenden Konzept folgend wird angenommen, dass Hirnareale, die einer größeren elektrischen Feldstärke ausgesetzt sind, ebenso einen höheren Stimulationseffekt erfahren. Damit kommt der Positionierung der Elektroden eine entscheidende Rolle für die Stimulation zu. Allerdings verteilt sich das elektrische Feld wegen des heterogenen elektrischen Leitfähigkeitsprofil des menschlichen Kopfes nicht uniform im Gehirn der Probanden. Außerdem ist das Verteilungsmuster auf Grund anatomischer Unterschiede zwischen den Probanden verschieden. Die triviale Abschätzung der Ausbreitung des elektrischen Feldes anhand der bloßen Position der Stimulationselektroden ist daher nicht ausreichend genau für eine zielgerichtete Stimulation. Computerbasierte, biophysikalische Simulationen der transkraniellen Elektrostimulation ermöglichen die individuelle Approximation des Verteilungsmusters des elektrischen Feldes in Probanden basierend auf deren medizinischen Bildgebungsdaten. Sie werden daher zunehmend verwendet, um tDCS-Anwendungen zu planen und verifizieren, und stellen ein wesentliches Hilfswerkzeug auf dem Weg zu individualisierter Schlaganfall-Rehabilitationstherapie dar. Softwaresysteme, die den dahinterstehenden individualisierten Verarbeitungsprozess erleichtern und für ein breites Feld an Forschern zugänglich machen, wurden in den vergangenen Jahren für den Anwendungsfall in gesunden Erwachsenen entwickelt. Jedoch bleibt die Simulation von Patienten mit krankhaftem Hirngewebe und strukturzerstörenden Läsionen eine nicht-triviale Aufgabe. Daher befasst sich das hier vorgestellte Projekt mit dem Aufbau und der praktischen Anwendung eines Arbeitsablaufes zur Simulation transkranieller Elektrostimulation. Dabei stand die Anforderung im Vordergrund medizinische Bildgebungsdaten insbesondere neurologischer Patienten mit krankhaft verändertem Hirngewebe verarbeiten zu können. Der grundlegende Arbeitsablauf zur Simulation wurde zunächst für gesunde Erwachsene entworfen und validiert. Dies umfasste die Zusammenstellung medizinischer Bildverarbeitungsalgorithmen zu einer umfangreichen Verarbeitungskette, um elektrisch relevante Strukturen in den Magnetresonanztomographiebildern des Kopfes und des Oberkörpers der Probanden zu identifizieren und zu extrahieren. Die identifizierten Strukturen mussten in Computermodelle überführt werden und das zugrundeliegende, physikalische Problem der elektrischen Volumenleitung in biologischen Geweben mit Hilfe numerischer Simulation gelöst werden. Im Verlauf des normalen Alterns ist das Gehirn strukturellen Veränderungen unterworfen, unter denen ein Verlust des Hirnvolumens sowie die Ausbildung mikroskopischer Veränderungen seiner Nervenfaserstruktur die Bedeutendsten sind. In einem zweiten Schritt wurde der Arbeitsablauf daher erweitert, um diese Phänomene des normalen Alterns zu berücksichtigen. Die vordergründige Herausforderung in diesem Teilprojekt war die biophysikalische Modellierung der veränderten Hirnmikrostruktur, da die resultierenden Veränderungen im Leitfähigkeitsprofil des Gehirns bisher noch nicht in der Literatur quantifiziert wurden. Die Erweiterung des Simulationsablauf zeichnete sich vorrangig dadurch aus, dass mit unsicheren elektrischen Leitfähigkeitswerten gearbeitet werden konnte. Damit war es möglich den Einfluss der ungenau bestimmbaren elektrischen Leitfähigkeit der verschiedenen biologischen Strukturen des menschlichen Kopfes auf das elektrische Feld zu ermitteln. In einer Simulationsstudie, in der Bilddaten von 88 Probanden einflossen, wurde die Auswirkung der veränderten Hirnfaserstruktur auf das elektrische Feld dann systematisch untersucht. Es wurde festgestellt, dass sich diese Gewebsveränderungen hochgradig lokal und im Allgemeinen gering auswirken. Schließlich wurden in einem dritten Schritt Simulationen für Schlaganfallpatienten durchgeführt. Ihre großen, strukturzerstörenden Läsionen wurden dabei mit einem höheren Detailgrad als in bisherigen Arbeiten modelliert und physikalisch abermals mit unsicheren Leitfähigkeiten gearbeitet, was zu unsicheren elektrischen Feldabschätzungen führte. Es wurden individuell berechnete elektrische Felddaten mit der Hirnaktivierung von 18 Patienten in Verbindung gesetzt, unter Berücksichtigung der inhärenten Unsicherheit in der Bestimmung der elektrischen Felder. Das Ziel war zu ergründen, ob die Hirnstimulation einen positiven Einfluss auf die Hirnaktivität der Patienten im Kontext von Rehabilitationstherapie ausüben und so die Neuorganisierung des Gehirns nach einem Schlaganfall unterstützen kann. Während ein schwacher Zusammenhang hergestellt werden konnte, sind weitere Untersuchungen nötig, um diese Frage abschließend zu klären.:Kurzfassung Abstract Contents 1 Overview 2 Anatomical structures in magnetic resonance images 2 Anatomical structures in magnetic resonance images 2.1 Neuroanatomy 2.2 Magnetic resonance imaging 2.3 Segmentation of MR images 2.4 Image morphology 2.5 Summary 3 Magnetic resonance image processing pipeline 3.1 Introduction to human body modeling 3.2 Description of the processing pipeline 3.3 Intermediate and final outcomes in two subjects 3.4 Discussion, limitations & future work 3.5 Conclusion 4 Numerical simulation of transcranial electric stimulation 4.1 Electrostatic foundations 4.2 Discretization of electrostatic quantities 4.3 The numeric solution process 4.4 Spatial discretization by volume meshing 4.5 Summary 5 Simulation workflow 5.1 Overview of tES simulation pipelines 5.2 My implementation of a tES simulation workflow 5.3 Verification & application examples 5.4 Discussion & Conclusion 6 Transcranial direct current stimulation in the aging brain 6.1 Handling age-related brain changes in tES simulations 6.2 Procedure of the simulation study 6.3 Results of the uncertainty analysis 6.4 Findings, limitations and discussion 7 Transcranial direct current stimulation in stroke patients 7.1 Bridging the gap between simulated electric fields and brain activation in stroke patients 7.2 Methodology for relating simulated electric fields to functional MRI data 7.3 Evaluation of the simulation study and correlation analysis 7.4 Discussion & Conclusion 8 Outlooks for simulations of transcranial electric stimulation List of Figures List of Tables Glossary of Neuroscience Terms Glossary of Technical Terms BibliographyTranscranial electric current stimulation (tES) denotes a group of brain stimulation techniques that apply a weak electric current over two or more non-invasively, head-mounted electrodes. When employing a direct-current, this method is denoted transcranial direct current stimulation (tDCS). The general aim of all tES techniques is the modulation of brain function by an up- or downregulation of brain activity. Among these, transcranial direct current stimulation is investigated as an adjuvant tool to promote processes of the microscopic reorganization of the brain as a consequence of learning and, more specifically, rehabilitation therapy after a stroke. Current challenges of this research are a high variability in the achieved stimulation effects across subjects and an incomplete understanding of the interplay between its underlying mechanisms. A key component to understanding the stimulation mechanism is considered the electric field, which is exerted by the electrodes and distributes in the subjects' heads. A principle concept assumes that brain areas exposed to a higher electric field strength likewise experience a higher stimulation. This attributes the positioning of the electrodes a decisive role for the stimulation. However, the electric field distributes non-uniformly across subjects' brains due to the heterogeneous electrical conductivity profile of the human head. Moreover, the distribution pattern is variable between subjects due to their individual anatomy. A trivial estimation of the distribution of the electric field solely based on the position of the stimulating electrodes is, therefore, not precise enough for a well-targeted stimulation. Computer-based biophysical simulations of transcranial electric stimulation enable the individual approximation of the distribution pattern of the electric field in subjects based on their medical imaging data. They are, thus, increasingly employed for the planning and verification of tDCS applications and constitute an essential tool on the way to individualized stroke rehabilitation therapy. Software pipelines facilitating the underlying individualized processing for a wide range of researchers have been developed for use in healthy adults over the past years, but, to date, the simulation of patients with abnormal brain tissue and structure disrupting lesions remains a non-trivial task. Therefore, the presented project was dedicated to establishing and practically applying a tES simulation workflow. The processing of medical imaging data of neurological patients with abnormal brain tissue was a central requirement in this process. The basic simulation workflow was first designed and validated for the simulation of healthy adults. This comprised compiling medical image processing algorithms into a comprehensive workflow to identify and extract electrically relevant physiological structures of the human head and upper torso from magnetic resonance images. The identified structures had to be converted to computational models. The underlying physical problem of electric volume conduction in biological tissue was solved by means of numeric simulation. Over the course of normal aging, the brain is subjected to structural alterations, among which a loss of brain volume and the development of microscopic alterations of its fiber structure are the most relevant. In a second step, the workflow was, thus, extended to incorporate these phenomena of normal aging. The main challenge in this subproject was the biophysical modeling of the altered brain microstructure as the resulting alterations to the conductivity profile of the brain were so far not quantified in the literature. Therefore, the augmentation of the workflow most notably included the modeling of uncertain electrical properties. With this, the influence of the uncertain electrical conductivity of the biological structures of the human head on the electric field could be assessed. In a simulation study, including imaging data of 88 subjects, the influence of the altered brain fiber structure on the electric field was then systematically investigated. These tissue alterations were found to exhibit a highly localized and generally low impact. Finally, in a third step, tDCS simulations of stroke patients were conducted. Their large, structure-disrupting lesions were modeled in a more detailed manner than in previous stroke simulation studies, and they were physically, again, modeled by uncertain electrical conductivity resulting in uncertain electric field estimates. Individually simulated electric fields were related to the brain activation of 18 patients, considering the inherently uncertain electric field estimations. The goal was to clarify whether the stimulation exerts a positive influence on brain function in the context of rehabilitation therapy supporting brain reorganization following a stroke. While a weak correlation could be established, further investigation will be necessary to answer that research question.:Kurzfassung Abstract Contents 1 Overview 2 Anatomical structures in magnetic resonance images 2 Anatomical structures in magnetic resonance images 2.1 Neuroanatomy 2.2 Magnetic resonance imaging 2.3 Segmentation of MR images 2.4 Image morphology 2.5 Summary 3 Magnetic resonance image processing pipeline 3.1 Introduction to human body modeling 3.2 Description of the processing pipeline 3.3 Intermediate and final outcomes in two subjects 3.4 Discussion, limitations & future work 3.5 Conclusion 4 Numerical simulation of transcranial electric stimulation 4.1 Electrostatic foundations 4.2 Discretization of electrostatic quantities 4.3 The numeric solution process 4.4 Spatial discretization by volume meshing 4.5 Summary 5 Simulation workflow 5.1 Overview of tES simulation pipelines 5.2 My implementation of a tES simulation workflow 5.3 Verification & application examples 5.4 Discussion & Conclusion 6 Transcranial direct current stimulation in the aging brain 6.1 Handling age-related brain changes in tES simulations 6.2 Procedure of the simulation study 6.3 Results of the uncertainty analysis 6.4 Findings, limitations and discussion 7 Transcranial direct current stimulation in stroke patients 7.1 Bridging the gap between simulated electric fields and brain activation in stroke patients 7.2 Methodology for relating simulated electric fields to functional MRI data 7.3 Evaluation of the simulation study and correlation analysis 7.4 Discussion & Conclusion 8 Outlooks for simulations of transcranial electric stimulation List of Figures List of Tables Glossary of Neuroscience Terms Glossary of Technical Terms Bibliograph

    Brain charts for the human lifespan

    Get PDF
    • …
    corecore