22,881 research outputs found

    Kepler: Robust Learning for Faster Parametric Query Optimization

    Full text link
    Most existing parametric query optimization (PQO) techniques rely on traditional query optimizer cost models, which are often inaccurate and result in suboptimal query performance. We propose Kepler, an end-to-end learning-based approach to PQO that demonstrates significant speedups in query latency over a traditional query optimizer. Central to our method is Row Count Evolution (RCE), a novel plan generation algorithm based on perturbations in the sub-plan cardinality space. While previous approaches require accurate cost models, we bypass this requirement by evaluating candidate plans via actual execution data and training an ML model to predict the fastest plan given parameter binding values. Our models leverage recent advances in neural network uncertainty in order to robustly predict faster plans while avoiding regressions in query performance. Experimentally, we show that Kepler achieves significant improvements in query runtime on multiple datasets on PostgreSQL.Comment: SIGMOD 202

    Optimal web-scale tiering as a flow problem

    Get PDF
    We present a fast online solver for large scale parametric max-flow problems as they occur in portfolio optimization, inventory management, computer vision, and logistics. Our algorithm solves an integer linear program in an online fashion. It exploits total unimodularity of the constraint matrix and a Lagrangian relaxation to solve the problem as a convex online game. The algorithm generates approximate solutions of max-flow problems by performing stochastic gradient descent on a set of flows. We apply the algorithm to optimize tier arrangement of over 84 million web pages on a layered set of caches to serve an incoming query stream optimally

    Multi-Objective Parametric Query Optimization

    Get PDF
    Classical query optimization compares query plans according to one cost metric and associates each plan with a constant cost value. In this paper, we introduce the Multi-Objective Parametric Query Optimization (MPQ) problem where query plans are compared according to multiple cost metrics and the cost of a given plan according to a given metric is modeled as a function that depends on multiple parameters. The cost metrics may for instance include execution time or monetary fees; a parameter may represent the selectivity of a query predicate that is unspecified at optimization time. MPQ generalizes parametric query optimization (which allows multiple parameters but only one cost metric) and multi-objective query optimization (which allows multiple cost metrics but no parameters). We formally analyze the novel MPQ problem and show why existing algorithms are inapplicable. We present a generic algorithm for MPQ and a specialized version for MPQ with piecewise-linear plan cost functions. We prove that both algorithms find all relevant query plans and experimentally evaluate the performance of our second algorithm in a Cloud computing scenario
    • …
    corecore