802 research outputs found

    Combining vocal tract length normalization with hierarchial linear transformations

    Get PDF
    Recent research has demonstrated the effectiveness of vocal tract length normalization (VTLN) as a rapid adaptation technique for statistical parametric speech synthesis. VTLN produces speech with naturalness preferable to that of MLLR-based adaptation techniques, being much closer in quality to that generated by the original av-erage voice model. However with only a single parameter, VTLN captures very few speaker specific characteristics when compared to linear transform based adaptation techniques. This paper pro-poses that the merits of VTLN can be combined with those of linear transform based adaptation in a hierarchial Bayesian frame-work, where VTLN is used as the prior information. A novel tech-nique for propagating the gender information from the VTLN prior through constrained structural maximum a posteriori linear regres-sion (CSMAPLR) adaptation is presented. Experiments show that the resulting transformation has improved speech quality with better naturalness, intelligibility and improved speaker similarity. Index Terms — Statistical parametric speech synthesis, hidden Markov models, speaker adaptation, vocal tract length normaliza-tion, constrained structural maximum a posteriori linear regression 1

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks
    corecore