4,873 research outputs found

    Pervasive intelligent routing in content centric delay tolerant networks

    Get PDF
    This paper introduces a Swarm-Intelligence based Routing protocol (SIR) that aims to efficiently route information in content centric Delay Tolerant Networks (CCDTN) also dubbed pocket switched networks. First, this paper formalizes the notion of optimal path in CCDTN and introduces an original and efficient algorithm to process these paths in dynamic graphs. The properties and some invariant features of these optimal paths are analyzed and derived from several real traces. Then, this paper shows how optimal path in CCDTN can be found and used from a fully distributed swarm-intelligence based approach of which the global intelligent behavior (i.e. shortest path discovery and use) emerges from simple peer to peer interactions applied during opportunistic contacts. This leads to the definition of the SIR routing protocol of which the consistency, efficiency and performances are demonstrated from intensive representative simulations

    Swarm-based Intelligent Routing (SIR) - a new approach for efficient routing in content centric delay tolerant networks

    Get PDF
    This paper introduces Swarm-based Intelligent Routing (SIR), a swarm intelligence based approach used for routing content in content centric Pocket Switched Networks. We first formalize the notion of optimal path in DTN, then introduce a swarm intelligence based routing protocol adapted to content centric DTN that use a publish/subscribe communication paradigm. The protocol works in a fully decentralized way in which nodes do not have any knowledge about the global topology. Nodes, via opportunistic contacts, update utility functions which synthesizes their spatio-temporal proximity from the content subscribers. This individual behavior applied by each node leads to the collective formation of gradient fields between content subscribers and content providers. Therefore, content routing simply sums up to follow the steepest slope along these gradient fields to reach subscribers who are located at the minima of the field. Via real traces analysis and simulation, we demonstrate the existence and relevance of such gradient field and show routing performance improvements when compared to classical routing protocols previously defined for information routing in DTN

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Coherent, automatic address resolution for vehicular ad hoc networks

    Get PDF
    Published in: Int. J. of Ad Hoc and Ubiquitous Computing, 2017 Vol.25, No.3, pp.163 - 179. DOI: 10.1504/IJAHUC.2017.10001935The interest in vehicular communications has increased notably. In this paper, the use of the address resolution (AR) procedures is studied for vehicular ad hoc networks (VANETs). We analyse the poor performance of AR transactions in such networks and we present a new proposal called coherent, automatic address resolution (CAAR). Our approach inhibits the use of AR transactions and instead increases the usefulness of routing signalling to automatically match the IP and MAC addresses. Through extensive simulations in realistic VANET scenarios using the Estinet simulator, we compare our proposal CAAR to classical AR and to another of our proposals that enhances AR for mobile wireless networks, called AR+. In addition, we present a performance evaluation of the behaviour of CAAR, AR and AR+ with unicast traffic of a reporting service for VANETs. Results show that CAAR outperforms the other two solutions in terms of packet losses and furthermore, it does not introduce additional overhead.Postprint (published version

    Contributions to modeling, structural analysis, and routing performance in dynamic networks

    Get PDF
    Cette thĂšse apporte des contributions Ă  la modĂ©lisation, comprĂ©hension ainsi qu’à la communication efficace d’information dans les rĂ©seaux dynamiques peuplant la pĂ©riphĂ©rie de l’Internet. Par rĂ©seaux dynamiques, nous signifions les rĂ©seaux pouvant ĂȘtre modĂ©lisĂ©s par des graphes dynamiques dans lesquels noeuds et liens Ă©voluent temporellement. Dans la premiĂšre partie de la thĂšse, nous proposons un nouveau modĂšle de mobilitĂ© - STEPS - qui permet de capturer un large spectre de comportement de mobilitĂ© humains. STEPS mets en oeuvre deux principes fondamentaux de la mobilitĂ© humaine : l’attachement prĂ©fĂ©rentiel Ă  une zone de prĂ©dilection et l’attraction vers une zone de prĂ©dilection. Nous proposons une modĂ©lisation markovienne de ce modĂšle de mobilitĂ©. Nous montrons que ce simple modĂšle paramĂ©trique est capable de capturer les caractĂ©ristiques statistiques saillantes de la mobilitĂ© humaine comme la distribution des temps d’inter-contacts et de contacts. Dans la deuxiĂšme partie, en utilisant STEPS, nous analysons les propriĂ©tĂ©s comportementales et structurelles fondamentales des rĂ©seaux opportunistes. Nous redĂ©finissons dans le contexte des rĂ©seaux dynamiques la notion de structure petit monde et montrons comment une telle structure peut Ă©merger. En particulier, nous montrons que les noeuds fortement dynamiques peuvent jouer le rĂŽle de ponts entre les composants dĂ©connectĂ©s, aident Ă  rĂ©duire significativement la longueur du chemin caractĂ©ristique du rĂ©seau et contribuent Ă  l’émergence du phĂ©nomĂšne petit-monde dans les rĂ©seaux dynamiques. Nous proposons une façon de modĂ©liser ce phĂ©nomĂšne sous STEPS. À partir d’un rĂ©seau dynamique rĂ©gulier dans lequel les noeuds limitent leur mobilitĂ© Ă  leurs zones prĂ©fĂ©rentielles respectives. Nous recablons ce rĂ©seau en injectant progressivement des noeuds nomades se dĂ©plaçant entre plusieurs zones. Nous montrons que le pourcentage de tels nƓuds nomades est de 10%, le rĂ©seau possĂšde une structure petit monde avec un fort taux de clusterisation et un faible longueur du chemin caractĂ©ristique. La troisiĂšme contribution de cette thĂšse porte sur l’étude de l’impact du dĂ©sordre et de l’irrĂ©gularitĂ© des contacts sur la capacitĂ© de communication d’un rĂ©seau dynamique. Nous analysons le degrĂ© de dĂ©sordre de rĂ©seaux opportunistes rĂ©els et montrons que si exploitĂ© correctement, celui-ci peut amĂ©liorer significativement les performances du routage. Nous introduisons ensuite un modĂšle permettant de capturer le niveau de dĂ©sordre d’un rĂ©seau dynamique. Nous proposons deux algorithmes simples et efficaces qui exploitent la structure temporelle d’un rĂ©seau dynamique pour dĂ©livrer les messages avec un bon compromis entre l’usage des ressources et les performances. Les rĂ©sultats de simulations et analytiques montrent que ce type d’algorithme est plus performant que les approches classiques. Nous mettons Ă©galement en Ă©vidence aussi la structure de rĂ©seau pour laquelle ce type d’algorithme atteint ses performances optimum. BasĂ© sur ce rĂ©sultat thĂ©orique nous proposons un nouveau protocole de routage efficace pour les rĂ©seaux opportunistes centrĂ© sur le contenu. Dans ce protocole, les noeuds maintiennent, via leurs contacts opportunistes, une fonction d’utilitĂ© qui rĂ©sume leur proximitĂ© spatio-temporelle par rapport aux autres noeuds. En consĂ©quence, router dans un tel contexte se rĂ©sume Ă  suivre le gradient de plus grande pente conduisant vers le noeud destination. Cette propriĂ©tĂ© induit un algorithme de routage simple et efficace qui peut ĂȘtre utilisĂ© aussi bien dans un contexte d’adressage IP que de rĂ©seau centrĂ© sur les contenus. Les rĂ©sultats de simulation montrent que ce protocole superforme les protocoles de routage classiques dĂ©jĂ  dĂ©finis pour les rĂ©seaux opportunistes. La derniĂšre contribution de cette thĂšse consiste Ă  mettre en Ă©vidence une application potentielle des rĂ©seaux dynamiques dans le contexte du « mobile cloud computing ». En utilisant les techniques d’optimisation particulaires, nous montrons que la mobilitĂ© peut augmenter considĂ©rablement la capacitĂ© de calcul des rĂ©seaux dynamiques. De plus, nous montrons que la structure dynamique du rĂ©seau a un fort impact sur sa capacitĂ© de calcul. ABSTRACT : This thesis contributes to the modeling, understanding and efficient communication in dynamic networks populating the periphery of the Internet. By dynamic networks, we refer to networks that can be modeled by dynamic graphs in which nodes and links change temporally. In the first part of the thesis, we propose a new mobility model - STEPS - which captures a wide spectrum of human mobility behavior. STEPS implements two fundamental principles of human mobility: preferential attachment and attractor. We show that this simple parametric model is able to capture the salient statistical properties of human mobility such as the distribution of inter-contact/contact time. In the second part, using STEPS, we analyze the fundamental behavioral and structural properties of opportunistic networks. We redefine in the context of dynamic networks the concept of small world structure and show how such a structure can emerge. In particular, we show that highly dynamic nodes can play the role of bridges between disconnected components, helping to significantly reduce the length of network path and contribute to the emergence of small-world phenomenon in dynamic networks. We propose a way to model this phenomenon in STEPS. From a regular dynamic network in which nodes limit their mobility to their respective preferential areas. We rewire this network by gradually injecting highly nomadic nodes moving between different areas. We show that when the ratio of such nomadic nodes is around 10%, the network has small world structure with a high degree of clustering and a low characteristic path length. The third contribution of this thesis is the study of the impact of disorder and contact irregularity on the communication capacity of a dynamic network. We analyze the degree of disorder of real opportunistic networks and show that if used correctly, it can significantly improve routing performances. We then introduce a model to capture the degree of disorder in a dynamic network. We propose two simple and efficient algorithms that exploit the temporal structure of a dynamic network to deliver messages with a good tradeoff between resource usage and performance. The simulation and analytical results show that this type of algorithm is more efficient than conventional approaches. We also highlight also the network structure for which this type of algorithm achieves its optimum performance. Based on this theoretical result, we propose a new efficient routing protocol for content centric opportunistic networks. In this protocol, nodes maintain, through their opportunistic contacts, an utility function that summarizes their spatio-temporal proximity to other nodes. As a result, routing in this context consists in following the steepest slopes of the gradient field leading to the destination node. This property leads to a simple and effective algorithm routing that can be used both in the context of IP networks and content centric networks. The simulation results show that this protocol outperforms traditional routing protocols already defined for opportunistic networks. The last contribution of this thesis is to highlight the potential application of dynamic networks in the context of "mobile cloud computing." Using the particle optimization techniques, we show that mobility can significantly increase the processing capacity of dynamic networks. In addition, we show that the dynamic structure of the network has a strong impact on its processing capacity
    • 

    corecore