230 research outputs found

    Estimation from quantized Gaussian measurements: when and how to use dither

    Full text link
    Subtractive dither is a powerful method for removing the signal dependence of quantization noise for coarsely quantized signals. However, estimation from dithered measurements often naively applies the sample mean or midrange, even when the total noise is not well described with a Gaussian or uniform distribution. We show that the generalized Gaussian distribution approximately describes subtractively dithered, quantized samples of a Gaussian signal. Furthermore, a generalized Gaussian fit leads to simple estimators based on order statistics that match the performance of more complicated maximum likelihood estimators requiring iterative solvers. The order statistics-based estimators outperform both the sample mean and midrange for nontrivial sums of Gaussian and uniform noise. Additional analysis of the generalized Gaussian approximation yields rules of thumb for determining when and how to apply dither to quantized measurements. Specifically, we find subtractive dither to be beneficial when the ratio between the Gaussian standard deviation and quantization interval length is roughly less than one-third. When that ratio is also greater than 0.822/K^0.930 for the number of measurements K > 20, estimators we present are more efficient than the midrange.https://arxiv.org/abs/1811.06856Accepted manuscrip

    Signal Recovery From 1-Bit Quantized Noisy Samples via Adaptive Thresholding

    Full text link
    In this paper, we consider the problem of signal recovery from 1-bit noisy measurements. We present an efficient method to obtain an estimation of the signal of interest when the measurements are corrupted by white or colored noise. To the best of our knowledge, the proposed framework is the pioneer effort in the area of 1-bit sampling and signal recovery in providing a unified framework to deal with the presence of noise with an arbitrary covariance matrix including that of the colored noise. The proposed method is based on a constrained quadratic program (CQP) formulation utilizing an adaptive quantization thresholding approach, that further enables us to accurately recover the signal of interest from its 1-bit noisy measurements. In addition, due to the adaptive nature of the proposed method, it can recover both fixed and time-varying parameters from their quantized 1-bit samples.Comment: This is a pre-print version of the original conference paper that has been accepted at the 2018 IEEE Asilomar Conference on Signals, Systems, and Computer

    Streaming an image through the eye: The retina seen as a dithered scalable image coder

    Get PDF
    We propose the design of an original scalable image coder/decoder that is inspired from the mammalians retina. Our coder accounts for the time-dependent and also nondeterministic behavior of the actual retina. The present work brings two main contributions: As a first step, (i) we design a deterministic image coder mimicking most of the retinal processing stages and then (ii) we introduce a retinal noise in the coding process, that we model here as a dither signal, to gain interesting perceptual features. Regarding our first contribution, our main source of inspiration will be the biologically plausible model of the retina called Virtual Retina. The main novelty of this coder is to show that the time-dependent behavior of the retina cells could ensure, in an implicit way, scalability and bit allocation. Regarding our second contribution, we reconsider the inner layers of the retina. We emit a possible interpretation for the non-determinism observed by neurophysiologists in their output. For this sake, we model the retinal noise that occurs in these layers by a dither signal. The dithering process that we propose adds several interesting features to our image coder. The dither noise whitens the reconstruction error and decorrelates it from the input stimuli. Furthermore, integrating the dither noise in our coder allows a faster recognition of the fine details of the image during the decoding process. Our present paper goal is twofold. First, we aim at mimicking as closely as possible the retina for the design of a novel image coder while keeping encouraging performances. Second, we bring a new insight concerning the non-deterministic behavior of the retina.Comment: arXiv admin note: substantial text overlap with arXiv:1104.155

    The low bit-rate coding of speech signals

    Get PDF
    Imperial Users onl

    Performance Analysis for Time-of-Arrival Estimation with Oversampled Low-Complexity 1-bit A/D Conversion

    Full text link
    Analog-to-digtial (A/D) conversion plays a crucial role when it comes to the design of energy-efficient and fast signal processing systems. As its complexity grows exponentially with the number of output bits, significant savings are possible when resorting to a minimum resolution of a single bit. However, then the nonlinear effect which is introduced by the A/D converter results in a pronounced performance loss, in particular for the case when the receiver is operated outside the low signal-to-noise ratio (SNR) regime. By trading the A/D resolution for a moderately faster sampling rate, we show that for time-of-arrival (TOA) estimation under any SNR level it is possible to obtain a low-complexity 11-bit receive system which features a smaller performance degradation then the classical low SNR hard-limiting loss of 2/π2/\pi (1.96-1.96 dB). Key to this result is the employment of a lower bound for the Fisher information matrix which enables us to approximate the estimation performance for coarsely quantized receivers with correlated noise models in a pessimistic way

    Performance Analysis for Time-of-Arrival Estimation with Oversampled Low-Complexity 1-bit A/D Conversion

    Full text link
    Analog-to-digtial (A/D) conversion plays a crucial role when it comes to the design of energy-efficient and fast signal processing systems. As its complexity grows exponentially with the number of output bits, significant savings are possible when resorting to a minimum resolution of a single bit. However, then the nonlinear effect which is introduced by the A/D converter results in a pronounced performance loss, in particular for the case when the receiver is operated outside the low signal-to-noise ratio (SNR) regime. By trading the A/D resolution for a moderately faster sampling rate, we show that for time-of-arrival (TOA) estimation under any SNR level it is possible to obtain a low-complexity 11-bit receive system which features a smaller performance degradation then the classical low SNR hard-limiting loss of 2/π2/\pi (1.96-1.96 dB). Key to this result is the employment of a lower bound for the Fisher information matrix which enables us to approximate the estimation performance for coarsely quantized receivers with correlated noise models in a pessimistic way
    corecore