303 research outputs found

    Optimal design of a quadratic parameter varying vehicle suspension system using contrast-based Fruit Fly Optimisation

    Get PDF
    In the UK, in 2014 almost fifty thousand motorists made claims about vehicle damages caused by potholes. Pothole damage mitigation has become so important that a number of car manufacturers have officially designated it as one of their priorities. The objective is to improve suspension shock performance without degrading road holding and ride comfort. In this study, it is shown that significant improvement in performance is achieved if a clipped quadratic parameter varying suspension is employed. Optimal design of the proposed system is challenging because of the multiple local minima causing global optimisation algorithms to get trapped at local minima, located far from the optimum solution. To this end an enhanced Fruit Fly Optimisation Algorithm − based on a recent study on how well a fruit fly’s tiny brain finds food − was developed. The new algorithm is first evaluated using standard and nonstandard benchmark tests and then applied to the computationally expensive suspension design problem. The proposed algorithm is simple to use, robust and well suited for the solution of highly nonlinear problems. For the suspension design problem new insight is gained, leading to optimum damping profiles as a function of excitation level and rattle space velocity

    Stochastic Fractal Based Multiobjective Fruit Fly Optimization

    Get PDF
    The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve the convergence performance of the fruit fly optimization algorithm. To deal with multiobjective optimization problems, the Pareto domination concept is integrated into the selection process of fruit fly optimization and a novel multiobjective fruit fly optimization algorithm is then developed. Similarly to most of other multiobjective evolutionary algorithms (MOEAs), an external elitist archive is utilized to preserve the nondominated solutions found so far during the evolution, and a normalized nearest neighbor distance based density estimation strategy is adopted to keep the diversity of the external elitist archive. Eighteen benchmarks are used to test the performance of the stochastic fractal based multiobjective fruit fly optimization algorithm (SFMOFOA). Numerical results show that the SFMOFOA is able to well converge to the Pareto fronts of the test benchmarks with good distributions. Compared with four state-of-the-art methods, namely, the non-dominated sorting generic algorithm (NSGA-II), the strength Pareto evolutionary algorithm (SPEA2), multi-objective particle swarm optimization (MOPSO), and multiobjective self-adaptive differential evolution (MOSADE), the proposed SFMOFOA has better or competitive multiobjective optimization performance

    Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator

    Full text link
    © 2016 Elsevier B.V. Parameter optimization of support vector regression (SVR) plays a challenging role in improving the generalization ability of machine learning. Fruit fly optimization algorithm (FFOA) is a recently developed swarm optimization algorithm for complicated multi-objective optimization problems and is also suitable for optimizing SVR parameters. In this work, parameter optimization in SVR using FFOA is investigated. In view of problems of premature and local optimum in FFOA, an improved FFOA algorithm based on self-adaptive step update strategy (SSFFOA) is presented to obtain the optimal SVR model. Moreover, the proposed method is utilized to characterize magnetorheological elastomer (MRE) base isolator, a typical hysteresis device. In this application, the obtained displacement, velocity and current level are used as SVR inputs while the output is the shear force response of the device. Experimental testing of the isolator with two types of excitations is applied for model performance evaluation. The results demonstrate that the proposed SSFFOA-optimized SVR (SSFFOA_SVR) has perfect generalization ability and more accurate prediction accuracy than other machine learning models, and it is a suitable and effective method to predict the dynamic behaviour of MRE isolator

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    Self-adaptive fuzzy-PID controller for AGC study in deregulated Power System

    Get PDF
    The aim of this paper elucidates the AGC issues in a large scale interconnected power system incorporating HVDC link under the deregulated environment. The performance of the system is degraded under the influence of abrupt load change, and parameter variation. To perceive a reliable and quality power supply, secondary robust controllers are essential. A novel self-adaptive Fuzzy-PID controller is proposed to ameliorate the dynamic performance of both the conventional PID and Fuzzy-PID controller, employed in the restructured power system. In self-adaptive Fuzzy-PID controller unlike the Fuzzy-PID controller, the output scaling factors are tuned dynamically while the controller is functioning. These three controllers are designed by enumerating different gains and scaling factors, applying a budding nature-inspired algorithm known as Wild Goat Algorithm (WGA). The superior dynamic performance of frequency and tie-line power deviation under self-adaptive Fuzzy-PID controller in comparison to its' counterparts is investigated by dispatching the scheduled and unscheduled power under different contracts such as poolco based transaction, bilateral transaction and contract violation based transaction through different tie-lines. The dynamic response under parameter variation and random load perturbation confers the robustness of the proposed controller
    corecore