31,762 research outputs found

    Experimental External Force Estimation Using a Non-Linear Observer for 6 axes Flexible-Joint Industrial Manipulators

    Get PDF
    This paper proposes a non-linear observer to estimate not only the state (position and velocity) of links but also the external forces exerted by the robot during Friction Stir Welding (FSW) processes. The difficulty of performing this process with a robot lies in its lack of rigidity. In order to ensure a better tracking performance, the data such as real positions, velocities of links and external forces are required. However, those variations are not always measured in most industrial robots. Therefore, in this study, an observer is proposed to reconstruct those necessary parameters by using only measurements of motor side. The proposed observer is carried out on a 6 DOF flexible-joint industrial manipulator used in a FSW process.ANR-2010-SEGI-003-01-COROUSSO, French National Agenc

    Identification of geometrical and elastostatic parameters of heavy industrial robots

    Get PDF
    The paper focuses on the stiffness modeling of heavy industrial robots with gravity compensators. The main attention is paid to the identification of geometrical and elastostatic parameters and calibration accuracy. To reduce impact of the measurement errors, the set of manipulator configurations for calibration experiments is optimized with respect to the proposed performance measure related to the end-effector position accuracy. Experimental results are presented that illustrate the advantages of the developed technique.Comment: arXiv admin note: substantial text overlap with arXiv:1311.667

    Stiffness modeling of robotic manipulator with gravity compensator

    Get PDF
    The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family

    Robot Manipulators: Modeling, Performance Analysis and Control

    Get PDF
    International audienceThis book presents the most recent research results about the modeling and control of robot manipulators. - Chapter 1 gives unified tools to derive direct and inverse geometric, kinematic and dynamic models of serial robots and addresses the issue of identification of the geometric and dynamic parameters of these models. - Chapter 2 describes the main features of parallel robots, the different architectures and the methods used to obtain direct and inverse geometric, kinematic and dynamic models paying special attention to singularity analysis. - Chapter 3 introduces global and local tools for performance analysis of serial robots. - Chapter 4 presents an original optimization technique for point-to-point trajectory generation accounting for the robot dynamics. - Chapter 5 presents standard control techniques in the joint space and task space for free motion (PID, computed torque, adaptive dynamic control, and variable structure control), and constrained motion (compliant force-position control). - In chapter 6, the concept of vision-based control is developed and Chapter 7 is devoted to specific issue of robots with flexible links. Efficient recursive Newton-Euler algorithms for both inverse and direct modeling are presented, as well as control methods ensuring position setting and vibration damping
    corecore