2,215 research outputs found

    A unified view of parameterized verification of abstract models of broadcast communication

    Get PDF
    We give a unified view of different parameterized models of concurrent and distributed systems with broadcast communication based on transition systems. Based on the resulting formal models, we discuss related verification methods and tools based on abstractions and symbolic state exploration

    Parameterized verification

    Get PDF
    The goal of parameterized verification is to prove the correctness of a system specification regardless of the number of its components. The problem is of interest in several different areas: verification of hardware design, multithreaded programs, distributed systems, and communication protocols. The problem is undecidable in general. Solutions for restricted classes of systems and properties have been studied in areas like theorem proving, model checking, automata and logic, process algebra, and constraint solving. In this introduction to the special issue, dedicated to a selection of works from the Parameterized Verification workshop PV \u201914 and PV \u201915, we survey some of the works developed in this research area

    Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations

    Full text link
    We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presentation of rewrite rules as well as the involved order, and using results for well-structured transition systems. We apply the resulting procedure to the analysis of the Distributed Dining Philosophers protocol on an arbitrary network structure.Comment: Extended version of a submittion accepted at RP'14 Worksho

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Parameterized verification of publish/subcribe protocols via Infinite-State Model Checking

    Get PDF
    We apply the Infinite-State Model Checking to formally specify and validate protocol skeletons for distributed systems with asynchronous communication and synchronous access to local data structures. More precisely, we validate the Redis Pub/Sub key-value Server. Redis is based on a publish-subscribe architecture used in Cloud Storage and Internet of Things ecosystems. For the considered protocol, we present a formal specification that combines ideas coming from round-based and shared-memory specification languages. The resulting model is validated via the SMT-based Infinite-state Model Checker Cubicle. In this setting we use unbounded arrays to model (1) arbitrary collections of publishers and subscribers, (2) unbounded shared memory used as a communication media between processes. Our model is validated using the symbolic backward reachability algorithm implemented in the tool. The peculiarity of the algorithm is that, upon termination, the resulting correctness proof is guaranteed to hold for every number of process instances

    Balancing Trade-off between Data Security and Energy Model for Wireless Sensor Network

    Get PDF
    An extensive effort to evolve various routing protocol to ensure optimal data delivery in energy efficient way is beneficial only if there is additional means of security process is synchronized. However, the security process consideration introduces additional overhead thus a security mechanism is needed to accomplish an optimal trade-off that exists in-between security as well as resource utilization especially energy. The prime purpose of this paper is to develop a process of security in the context of wireless sensor networks (WSN) by introducing two types of sensor node deployed with different capabilities. The proposed algorithm Novel Model of Secure Paradigm (N-MSP) which is further integrated with WSN. However, this algorithm uses a Hash-based Message Authentication Code (HMAC) authentication followed by pairwise key establishment during data aggregation process in a WSN. The extensive simulation carried out in a numerical platform called MATLAB that depicts that the proposed N-MSP achieves optimal processing time along with energy efficient pairwise key establishment during data aggregation proces
    • 

    corecore