25 research outputs found

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter

    Parameterized approximation schemes for steiner trees with small number of Steiner vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: For Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter

    Towards Exact Structural Thresholds for Parameterized Complexity

    Get PDF
    Parameterized complexity seeks to optimally use input structure to obtain faster algorithms for NP-hard problems. This has been most successful for graphs of low treewidth, i.e., graphs decomposable by small separators: Many problems admit fast algorithms relative to treewidth and many of them are optimal under the Strong Exponential-Time Hypothesis (SETH). Fewer such results are known for more general structure such as low clique-width (decomposition by large and dense but structured separators) and more restrictive structure such as low deletion distance to some sparse graph class. Despite these successes, such results remain "islands" within the realm of possible structure. Rather than adding more islands, we seek to determine the transitions between them, that is, we aim for structural thresholds where the complexity increases as input structure becomes more general. Going from deletion distance to treewidth, is a single deletion set to a graph with simple components enough to yield the same lower bound as for treewidth or does it take many disjoint separators? Going from treewidth to clique-width, how much more density entails the same complexity as clique-width? Conversely, what is the most restrictive structure that yields the same lower bound? For treewidth, we obtain both refined and new lower bounds that apply already to graphs with a single separator X such that G-X has treewidth at most r = ?(1), while G has treewidth |X|+?(1). We rule out algorithms running in time ?^*((r+1-?)^k) for Deletion to r-Colorable parameterized by k = |X|; this implies the same lower bound relative to treedepth and (hence) also to treewidth. It specializes to ?^*((3-?)^k) for Odd Cycle Transversal where tw(G-X) ? r = 2 is best possible. For clique-width, an extended version of the above reduction rules out time ?^*((4-?)^k), where X is allowed to be a possibly large separator consisting of k (true) twinclasses, while the treewidth of G - X remains r; this is proved also for the more general Deletion to r-Colorable and it implies the same lower bound relative to clique-width. Further results complement what is known for Vertex Cover, Dominating Set and Maximum Cut. All lower bounds are matched by existing and newly designed algorithms

    Preprocessing Complexity for Some Graph Problems Parameterized by Structural Parameters

    Full text link
    Structural graph parameters play an important role in parameterized complexity, including in kernelization. Notably, vertex cover, neighborhood diversity, twin-cover, and modular-width have been studied extensively in the last few years. However, there are many fundamental problems whose preprocessing complexity is not fully understood under these parameters. Indeed, the existence of polynomial kernels or polynomial Turing kernels for famous problems such as Clique, Chromatic Number, and Steiner Tree has only been established for a subset of structural parameters. In this work, we use several techniques to obtain a complete preprocessing complexity landscape for over a dozen of fundamental algorithmic problems.Comment: 24 pages, 1 table, 1 figur

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    Grundy Distinguishes Treewidth from Pathwidth

    Get PDF
    Structural graph parameters, such as treewidth, pathwidth, and clique-width, are a central topic of study in parameterized complexity. A main aim of research in this area is to understand the "price of generality" of these widths: as we transition from more restrictive to more general notions, which are the problems that see their complexity status deteriorate from fixed-parameter tractable to intractable? This type of question is by now very well-studied, but, somewhat strikingly, the algorithmic frontier between the two (arguably) most central width notions, treewidth and pathwidth, is still not understood: currently, no natural graph problem is known to be W-hard for one but FPT for the other. Indeed, a surprising development of the last few years has been the observation that for many of the most paradigmatic problems, their complexities for the two parameters actually coincide exactly, despite the fact that treewidth is a much more general parameter. It would thus appear that the extra generality of treewidth over pathwidth often comes "for free". Our main contribution in this paper is to uncover the first natural example where this generality comes with a high price. We consider Grundy Coloring, a variation of coloring where one seeks to calculate the worst possible coloring that could be assigned to a graph by a greedy First-Fit algorithm. We show that this well-studied problem is FPT parameterized by pathwidth; however, it becomes significantly harder (W[1]-hard) when parameterized by treewidth. Furthermore, we show that Grundy Coloring makes a second complexity jump for more general widths, as it becomes para-NP-hard for clique-width. Hence, Grundy Coloring nicely captures the complexity trade-offs between the three most well-studied parameters. Completing the picture, we show that Grundy Coloring is FPT parameterized by modular-width.Comment: To be published in proceedings of ESA 202

    How Bad is the Freedom to Flood-It?

    Get PDF
    Fixed-Flood-It and Free-Flood-It are combinatorial problems on graphs that generalize a very popular puzzle called Flood-It. Both problems consist of recoloring moves whose goal is to produce a monochromatic ("flooded") graph as quickly as possible. Their difference is that in Free-Flood-It the player has the additional freedom of choosing the vertex to play in each move. In this paper, we investigate how this freedom affects the complexity of the problem. It turns out that the freedom is bad in some sense. We show that some cases trivially solvable for Fixed-Flood-It become intractable for Free-Flood-It. We also show that some tractable cases for Fixed-Flood-It are still tractable for Free-Flood-It but need considerably more involved arguments. We finally present some combinatorial properties connecting or separating the two problems. In particular, we show that the length of an optimal solution for Fixed-Flood-It is always at most twice that of Free-Flood-It, and this is tight
    corecore