3,552 research outputs found

    Parameterized Verification of Safety Properties in Ad Hoc Network Protocols

    Full text link
    We summarize the main results proved in recent work on the parameterized verification of safety properties for ad hoc network protocols. We consider a model in which the communication topology of a network is represented as a graph. Nodes represent states of individual processes. Adjacent nodes represent single-hop neighbors. Processes are finite state automata that communicate via selective broadcast messages. Reception of a broadcast is restricted to single-hop neighbors. For this model we consider a decision problem that can be expressed as the verification of the existence of an initial topology in which the execution of the protocol can lead to a configuration with at least one node in a certain state. The decision problem is parametric both on the size and on the form of the communication topology of the initial configurations. We draw a complete picture of the decidability and complexity boundaries of this problem according to various assumptions on the possible topologies.Comment: In Proceedings PACO 2011, arXiv:1108.145

    Towards the Formal Specification and Verification of Maple Programs

    Full text link
    In this paper, we present our ongoing work and initial results on the formal specification and verification of MiniMaple (a substantial subset of Maple with slight extensions) programs. The main goal of our work is to find behavioral errors in such programs w.r.t. their specifications by static analysis. This task is more complex for widely used computer algebra languages like Maple as these are fundamentally different from classical languages: they support non-standard types of objects such as symbols, unevaluated expressions and polynomials and require abstract computer algebraic concepts and objects such as rings and orderings etc. As a starting point we have defined and formalized a syntax, semantics, type system and specification language for MiniMaple

    A Calculus for Orchestration of Web Services

    Get PDF
    We introduce COWS (Calculus for Orchestration of Web Services), a new foundational language for SOC whose design has been influenced by WS-BPEL, the de facto standard language for orchestration of web services. COWS combines in an original way a number of ingredients borrowed from well-known process calculi, e.g. asynchronous communication, polyadic synchronization, pattern matching, protection, delimited receiving and killing activities, while resulting different from any of them. Several examples illustrates COWS peculiarities and show its expressiveness both for modelling imperative and orchestration constructs, e.g. web services, flow graphs, fault and compensation handlers, and for encoding other process and orchestration languages

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details

    Parameterized Concurrent Multi-Party Session Types

    Full text link
    Session types have been proposed as a means of statically verifying implementations of communication protocols. Although prior work has been successful in verifying some classes of protocols, it does not cope well with parameterized, multi-actor scenarios with inherent asynchrony. For example, the sliding window protocol is inexpressible in previously proposed session type systems. This paper describes System-A, a new typing language which overcomes many of the expressiveness limitations of prior work. System-A explicitly supports asynchrony and parallelism, as well as multiple forms of parameterization. We define System-A and show how it can be used for the static verification of a large class of asynchronous communication protocols.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Sequentializing Parameterized Programs

    Full text link
    We exhibit assertion-preserving (reachability preserving) transformations from parameterized concurrent shared-memory programs, under a k-round scheduling of processes, to sequential programs. The salient feature of the sequential program is that it tracks the local variables of only one thread at any point, and uses only O(k) copies of shared variables (it does not use extra counters, not even one counter to keep track of the number of threads). Sequentialization is achieved using the concept of a linear interface that captures the effect an unbounded block of processes have on the shared state in a k-round schedule. Our transformation utilizes linear interfaces to sequentialize the program, and to ensure the sequential program explores only reachable states and preserves local invariants.Comment: In Proceedings FIT 2012, arXiv:1207.348
    • …
    corecore