1,503 research outputs found

    Model Checking Paxos in Spin

    Full text link
    We present a formal model of a distributed consensus algorithm in the executable specification language Promela extended with a new type of guards, called counting guards, needed to implement transitions that depend on majority voting. Our formalization exploits abstractions that follow from reduction theorems applied to the specific case-study. We apply the model checker Spin to automatically validate finite instances of the model and to extract preconditions on the size of quorums used in the election phases of the protocol.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Counter Attack on Byzantine Generals: Parameterized Model Checking of Fault-tolerant Distributed Algorithms

    Full text link
    We introduce an automated parameterized verification method for fault-tolerant distributed algorithms (FTDA). FTDAs are parameterized by both the number of processes and the assumed maximum number of Byzantine faulty processes. At the center of our technique is a parametric interval abstraction (PIA) where the interval boundaries are arithmetic expressions over parameters. Using PIA for both data abstraction and a new form of counter abstraction, we reduce the parameterized problem to finite-state model checking. We demonstrate the practical feasibility of our method by verifying several variants of the well-known distributed algorithm by Srikanth and Toueg. Our semi-decision procedures are complemented and motivated by an undecidability proof for FTDA verification which holds even in the absence of interprocess communication. To the best of our knowledge, this is the first paper to achieve parameterized automated verification of Byzantine FTDA

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape
    • …
    corecore