844 research outputs found

    Parameterized Streaming Algorithms for Min-Ones d-SAT

    Get PDF
    In this work, we initiate the study of the Min-Ones d-SAT problem in the parameterized streaming model. An instance of the problem consists of a d-CNF formula F and an integer k, and the objective is to determine if F has a satisfying assignment which sets at most k variables to 1. In the parameterized streaming model, input is provided as a stream, just as in the usual streaming model. A key difference is that the bound on the read-write memory available to the algorithm is O(f(k) log n) (f: N -> N, a computable function) as opposed to the O(log n) bound of the usual streaming model. The other important difference is that the number of passes the algorithm makes over its input must be a (preferably small) function of k. We design a (k + 1)-pass parameterized streaming algorithm that solves Min-Ones d-SAT (d >= 2) using space O((kd^(ck) + k^d)log n) (c > 0, a constant) and a (d + 1)^k-pass algorithm that uses space O(k log n). We also design a streaming kernelization for Min-Ones 2-SAT that makes (k + 2) passes and uses space O(k^6 log n) to produce a kernel with O(k^6) clauses. To complement these positive results, we show that any k-pass algorithm for or Min-Ones d-SAT (d >= 2) requires space Omega(max{n^(1/k) / 2^k, log(n / k)}) on instances (F, k). This is achieved via a reduction from the streaming problem POT Pointer Chasing (Guha and McGregor [ICALP 2008]), which might be of independent interest. Given this, our (k + 1)-pass parameterized streaming algorithm is the best possible, inasmuch as the number of passes is concerned. In contrast to the results of Fafianie and Kratsch [MFCS 2014] and Chitnis et al. [SODA 2015], who independently showed that there are 1-pass parameterized streaming algorithms for Vertex Cover (a restriction of Min-Ones 2-SAT), we show using lower bounds from Communication Complexity that for any d >= 1, a 1-pass streaming algorithm for Min-Ones d-SAT requires space Omega(n). This excludes the possibility of a 1-pass parameterized streaming algorithm for the problem. Additionally, we show that any p-pass algorithm for the problem requires space Omega(n/p)

    Towards a Theory of Parameterized Streaming Algorithms

    Get PDF
    Parameterized complexity attempts to give a more fine-grained analysis of the complexity of problems: instead of measuring the running time as a function of only the input size, we analyze the running time with respect to additional parameters. This approach has proven to be highly successful in delineating our understanding of NP-hard problems. Given this success with the TIME resource, it seems but natural to use this approach for dealing with the SPACE resource. First attempts in this direction have considered a few individual problems, with some success: Fafianie and Kratsch [MFCS\u2714] and Chitnis et al. [SODA\u2715] introduced the notions of streaming kernels and parameterized streaming algorithms respectively. For example, the latter shows how to refine the Omega(n^2) bit lower bound for finding a minimum Vertex Cover (VC) in the streaming setting by designing an algorithm for the parameterized k-VC problem which uses O(k^{2}log n) bits. In this paper, we initiate a systematic study of graph problems from the paradigm of parameterized streaming algorithms. We first define a natural hierarchy of space complexity classes of FPS, SubPS, SemiPS, SupPS and BrutePS, and then obtain tight classifications for several well-studied graph problems such as Longest Path, Feedback Vertex Set, Dominating Set, Girth, Treewidth, etc. into this hierarchy (see Figure 1 and Table 1). On the algorithmic side, our parameterized streaming algorithms use techniques from the FPT world such as bidimensionality, iterative compression and bounded-depth search trees. On the hardness side, we obtain lower bounds for the parameterized streaming complexity of various problems via novel reductions from problems in communication complexity. We also show a general (unconditional) lower bound for space complexity of parameterized streaming algorithms for a large class of problems inspired by the recently developed frameworks for showing (conditional) kernelization lower bounds. Parameterized algorithms and streaming algorithms are approaches to cope with TIME and SPACE intractability respectively. It is our hope that this work on parameterized streaming algorithms leads to two-way flow of ideas between these two previously separated areas of theoretical computer science

    Metadata-Aware Query Processing over Data Streams

    Get PDF
    Many modern applications need to process queries over potentially infinite data streams to provide answers in real-time. This dissertation proposes novel techniques to optimize CPU and memory utilization in stream processing by exploiting metadata on streaming data or queries. It focuses on four topics: 1) exploiting stream metadata to optimize SPJ query operators via operator configuration, 2) exploiting stream metadata to optimize SPJ query plans via query-rewriting, 3) exploiting workload metadata to optimize parameterized queries via indexing, and 4) exploiting event constraints to optimize event stream processing via run-time early termination. The first part of this dissertation proposes algorithms for one of the most common and expensive query operators, namely join, to at runtime identify and purge no-longer-needed data from the state based on punctuations. Exploitations of the combination of punctuation and commonly-used window constraints are also studied. Extensive experimental evaluations demonstrate both reduction on memory usage and improvements on execution time due to the proposed strategies. The second part proposes herald-driven runtime query plan optimization techniques. We identify four query optimization techniques, design a lightweight algorithm to efficiently detect the optimization opportunities at runtime upon receiving heralds. We propose a novel execution paradigm to support multiple concurrent logical plans by maintaining one physical plan. Extensive experimental study confirms that our techniques significantly reduce query execution times. The third part deals with the shared execution of parameterized queries instantiated from a query template. We design a lightweight index mechanism to provide multiple access paths to data to facilitate a wide range of parameterized queries. To withstand workload fluctuations, we propose an index tuning framework to tune the index configurations in a timely manner. Extensive experimental evaluations demonstrate the effectiveness of the proposed strategies. The last part proposes event query optimization techniques by exploiting event constraints such as exclusiveness or ordering relationships among events extracted from workflows. Significant performance gains are shown to be achieved by our proposed constraint-aware event processing techniques

    Recurrent models and lower bounds for projective syntactic decoding

    Get PDF

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF
    • …
    corecore