766 research outputs found

    The foundational legacy of ASL

    Get PDF
    Abstract. We recall the kernel algebraic specification language ASL and outline its main features in the context of the state of research on algebraic specification at the time it was conceived in the early 1980s. We discuss the most significant new ideas in ASL and the influence they had on subsequent developments in the field and on our own work in particular.

    Constraints for behavioural specifications

    Get PDF
    Behavioural specifications with constraints for the incremental development of algebraic specifications are presented. The behavioural constraints correspond to the completely defined subparts of a given incomplete behavioural specification. Moreover, the local observability criteria used within a behavioural constraint could not coincide with the global criteria used in the behavioural specification. This is absolutely needed because, otherwise, some constraints could involve only non observable sorts and therefore have trivial semantics. Finally, the extension operations and completion operations for refining specifications are defined. The extension operations correspond to horizontal refinements and build larger specifications on top of existing ones in a conservative way. The completion operations correspond to vertical refinements, they add detail to an incomplete behavioural specification and they do restrict the class of models.Postprint (published version

    A System Level Approach to Controller Synthesis

    Get PDF
    Biological and advanced cyber-physical control systems often have limited, sparse, uncertain, and distributed communication and computing in addition to sensing and actuation. Fortunately, the corresponding plants and performance requirements are also sparse and structured, and this must be exploited to make constrained controller design feasible and tractable. We introduce a new “system level” (SL) approach involving three complementary SL elements. SL parameterizations (SLPs) provide an alternative to the Youla parameterization of all stabilizing controllers and the responses they achieve, and combine with SL constraints (SLCs) to parameterize the largest known class of constrained stabilizing controllers that admit a convex characterization, generalizing quadratic invariance. SLPs also lead to a generalization of detectability and stabilizability, suggesting the existence of a rich separation structure, that when combined with SLCs is naturally applicable to structurally constrained controllers and systems. We further provide a catalog of useful SLCs, most importantly including sparsity, delay, and locality constraints on both communication and computing internal to the controller, and external system performance. Finally, we formulate SL synthesis problems, which define the broadest known class of constrained optimal control problems that can be solved using convex programming

    Specification, horizontal composition and parameterization of algebraic implementations

    Get PDF
    Loose specifications of abstract data types (ADTs) have many non-isomorphic algebras as models. An implementation between two loose Specifications should therefore consider many abstraction functions together with their source and target algebras. Just like specifications are stepwise refined to restrict their class of models, implementations should be stepwise refinable to restrict the class of abstraction functions. In this scenario specifications and implementations can be developed interwovenly. We suggest to have implementation specifications analogously to loose ADT specifications: Implementations have signatures, models, axioms and sentences thus constituting an institution. Implementation specifications are the theories of this institution and refinements between implementation specifications are its theory morphisms. In this framework, implementations between parameterized specifications and horizontal composition of implementations turn out to be special cases of the more powerful concept of parameterized implementations, which allow to instantiate an implementation by substituting a subimplementation by another implementation

    IR-VIC: Unsupervised Discovery of Sub-goals for Transfer in RL

    Full text link
    We propose a novel framework to identify sub-goals useful for exploration in sequential decision making tasks under partial observability. We utilize the variational intrinsic control framework (Gregor et.al., 2016) which maximizes empowerment -- the ability to reliably reach a diverse set of states and show how to identify sub-goals as states with high necessary option information through an information theoretic regularizer. Despite being discovered without explicit goal supervision, our sub-goals provide better exploration and sample complexity on challenging grid-world navigation tasks compared to supervised counterparts in prior work

    Verification in ASL and related specification languages

    Get PDF

    Exploring Natural User Abstractions For Shared Perceptual Manipulator Task Modeling & Recovery

    Get PDF
    State-of-the-art domestic robot assistants are essentially autonomous mobile manipulators capable of exerting human-scale precision grasps. To maximize utility and economy, non-technical end-users would need to be nearly as efficient as trained roboticists in control and collaboration of manipulation task behaviors. However, it remains a significant challenge given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics, and computer science for rapid task modeling and recovery. But research on robot-centric collaboration has garnered momentum in recent years; robots are now planning in partially observable environments that maintain geometries and semantic maps, presenting opportunities for non-experts to cooperatively control task behavior with autonomous-planning agents exploiting the knowledge. However, as autonomous systems are not immune to errors under perceptual difficulty, a human-in-the-loop is needed to bias autonomous-planning towards recovery conditions that resume the task and avoid similar errors. In this work, we explore interactive techniques allowing non-technical users to model task behaviors and perceive cooperatively with a service robot under robot-centric collaboration. We evaluate stylus and touch modalities that users can intuitively and effectively convey natural abstractions of high-level tasks, semantic revisions, and geometries about the world. Experiments are conducted with \u27pick-and-place\u27 tasks in an ideal \u27Blocks World\u27 environment using a Kinova JACO six degree-of-freedom manipulator. Possibilities for the architecture and interface are demonstrated with the following features; (1) Semantic \u27Object\u27 and \u27Location\u27 grounding that describe function and ambiguous geometries (2) Task specification with an unordered list of goal predicates, and (3) Guiding task recovery with implied scene geometries and trajectory via symmetry cues and configuration space abstraction. Empirical results from four user studies show our interface was much preferred than the control condition, demonstrating high learnability and ease-of-use that enable our non-technical participants to model complex tasks, provide effective recovery assistance, and teleoperative control
    corecore