12 research outputs found

    ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์„ ์ด์šฉํ•œ ์ˆ˜์ค‘์Œํ–ฅ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2021. 2. ์„ฑ์šฐ์ œ.์‚ผ์ฐจ์› ์Œํ–ฅ ์†Œ์Œ์›์˜ ์œ„์น˜์ถ”์ •์€ ์ž ์ˆ˜์ฒด, ์‚ฐ๋ž€์ฒด, ์บ๋น„ํ…Œ์ด์…˜ ์†Œ์Œ์›์˜ ๋ถ„์„์„ ์œ„ํ•ด ํ•„์ˆ˜์ ์ธ ๊ณผ์ •์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์€ ๊ฐ•์ธํ•œ ์œ„์น˜ ์ถ”์ • ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋‚˜, ํ•˜๋‚˜์˜ ์†Œ์Œ์›์˜ ์œ„์น˜๋งŒ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ €ํ•ด์ƒ๋„์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ๊ณ ํ•ด์ƒ๋„์˜ ์œ„์น˜ ์ถ”์ • ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ์ตœ๊ทผ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜์˜ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ•๋“ค์ด ์‚ฌ์šฉ๋˜์–ด ์ง€๊ณ  ์žˆ๋‹ค. ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์€ ํฌ์†Œ์„ฑ์„ ๊ฐ€์ง„ ์‹ ํ˜ธ์˜ ํš๋“,์ฒ˜๋ฆฌ,๋ณต์›์— ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด๋ฉฐ ์˜์ƒ์ฒ˜๋ฆฌ, ์ˆ˜์ค‘์Œํ–ฅ, ์ตœ์ ํ™” ๋ฌธ์ œ ๋“ฑ์—์„œ ๋„๋ฆฌ ํ™œ์šฉ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ˆ˜์ค‘ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ •์„ ์œ„ํ•˜์—ฌ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐฅ์˜ ๊ธฐ๋ฒ•๋“ค์ด ์ ์šฉ๋˜์–ด ์™”์œผ๋ฉฐ ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์— ๋น„ํ•˜์—ฌ ํ•ด์ƒ๋„ ์ธก๋ฉด์—์„œ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ํ•ด์ƒ๋„ ์ธก๋ฉด์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•์€ ์—ฌ์ „ํžˆ ๋ฌธ์ œ์ ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ฒซ๋ฒˆ์งธ, ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์€ ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์— ๋น„ํ•ด ์ˆ˜์น˜ ์—ฐ์‚ฐ ๊ณผ์ •์ด ๋ถˆ์•ˆ์ „์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋น„๋ก ๊ณ ํ•ด์ƒ๋„์˜ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋‚˜ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์€ ์ˆ˜์น˜ํ•ด์„ ๊ณผ์ •์—์„œ ๋ถˆ์•ˆ์ •ํ•œ ๋ชจ์Šต์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์•ˆ์ •์ ์ธ ๋ณต์›์„ ์ €ํ•ดํ•œ๋‹ค. ๋‘๋ฒˆ์งธ, ๊ธฐ์ €๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ์˜ค์ฐจ๊ฐ€ ์ •ํ™•ํ•œ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ •์„ ์ €ํ•ดํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ 3์ฐจ์› ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ์ € ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•์ด ์•„์ง๊นŒ์ง€ ๊ฐœ๋ฐœ๋˜์ง€ ๋ชปํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜์˜ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ•์ด ๊ฐ€์ง€๋Š” ๋ฌธ์ œ์ ์„ ํŒŒ์•…ํ•˜๊ณ  3์ฐจ์› ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ํ–ฅ์ƒ๋œ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ํƒ์ƒ‰ ๊ณต๊ฐ„ ์‚ฌ์ด์˜ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋กœ ์ธํ•˜์—ฌ ๋ฐœ์ƒํ•˜๋Š” ํ•ด์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ํ•ด๊ฒฐ์•„๊ธฐ ์œ„ํ•˜์—ฌ ``๋‹ค์ค‘์ฃผํŒŒ์ˆ˜ ์ƒ๊ด€ ์ฒ˜๋ฆฌ๊ธฐ๋ฒ•"์„ ์†Œ๊ฐœํ•˜๊ณ , 3์ฐจ์› ์œ„์น˜ ์ถ”์ •๋ฌธ์ œ์—์„œ ๊ธฐ์ €๋ถˆ์ผ์น˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ``์œ ๋™ ํƒ์ƒ‰ ๊ฒฉ์ž ๊ธฐ๋ฒ•"์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์— ๋น„ํ•˜์—ฌ ์ •ํ™•ํ•œ ์œ„์น˜ ์ถ”์ • ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•œ ์œ„์น˜ ์ถ”์ •๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋Ÿฌํ•œ ์ฃผ์žฅ์„ ๋’ท๋ฐ›์นจํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆ˜์ค‘์Œํ–ฅ ์†Œ์Œ์›์˜ 3์ฐจ์› ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ๋ฅผ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃจ์—ˆ์œผ๋‚˜, ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ์†Œ๋‚˜ ๋ฐ ๋ ˆ์ด๋”, ์Œํ–ฅ ์†Œ์Œ์› ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ์—๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Three-dimensional acoustic localization is an essential process to analyze the underwater sound sources such as submarine, scatterer, marine cavitation. Traditional beamforming processors provide robust localization results, however, the results show a low-resolution result which only reveals one dominant source location. In order to obtain the high resolution localization results, compressive sensing(CS) based approaches have been used recently. CS technique is an effective way for acquiring, processing, reconstructing the sparse signal and has wide applicability to many research fields such as image processing, underwater acoustics and optimization problems. For localizing the underwater acoustic sources, CS-based approaches have been adopted in many research fields and have shown better localization performance compared to the traditional beamforming processors in terms of resolution. Despite the performance improvement in resolution, there are still problems that need to be resolved when using the CS-based method. First, the CS-based method does not appear to be robust compared with the traditional beamforming processors. CS-based method provides high-resolution results, however, it suffers from computational instability which hinders the stable reconstruction. Second, basis mismatch error hindrances estimating the exact source locations. Moreover, there is no basis mismatch estimation technique applicable to 3D source localization problem. This dissertation points out the limitation of conventional CS-based localization method and introduces the advanced CS-based localization method which deals with 3D source localization problem. The ``coherent multiple-frequency processing" is introduced to overcome the instability of solution induced by high correlation of spatial grids and ``flexible searching-grid technique" is introduced to solve the basis mismatch problem which is developed for 3D source localization problem. The suggested techniques provide more accurate localization results compared to traditional beamforming processors or conventional CS-based beamforming processors and the arguments are backed with actual experimental data which was conducted in a cavitation tunnel. Though underwater acoustic source localization problems are presented in this dissertation, the proposed technique can be extended to many research fields, such as radar detection, sonar detection, ultrasound imaging.1 Introduction 2 1.1 Issue 1 : Computational Stability 4 1.2 Issue 2 : Basis Mismatch 5 1.3 Organization of the Dissertation 5 2 CS techniques for three-dimensional source localization 9 2.1 Compressive Sensing (CS) 9 2.2 Block-Sparse Compressive Sensing (BSCS) 11 2.3 Sparse Bayesian learning (SBL) 12 2.4 Off-Grid Sparse Bayesian Inference (OGSBI) 14 3 3D CS-based source localization method using multiple-frequency components 18 3.1 Introduction 18 3.2 Block-sparse Compressive Sensing for Incipient Tip Vortex Cavitation Localization 24 3.2.1 System framework for incipient tip vortex cavitation localization 24 3.2.2 Incoherent multiple-frequency localization with compressive sensing 26 3.2.3 Coherent multiple-frequency localization with block-sparse compressive sensing 28 3.3 Localization Results for Incipient TVC 32 3.3.1 Transducer source experiment 33 3.3.2 Incipient TVC Noise Source Experiment 36 3.4 Conclusion 41 3.5 Acknowledgments 43 4 3D CS-based source localization method by reducing the basis mismatch error 48 4.1 Introduction 48 4.2 Off grid system framework for 3D source localization 50 4.2.1 System framework for 3-dimensional off gird source localization 50 4.2.2 Coherent multiple-frequency localization with block-sparse Bayesian learning technique 53 4.2.3 3-dimensional off grid source localization method 55 4.3 Simulation and Experiment Results 62 4.4 Conclusion 65 5 Summary 70 Abstract (In Korean) 73Docto

    Efficient direction of arrival estimation based on sparse covariance fitting criterion with modeling mismatch

    Get PDF
    This paper studies direction of arrival (DoA) estimation with an antenna array using sparse signal reconstruction (SSR). Among the existing SSR methods, the sparse covariance fitting based algorithms, which can estimate source power and noise variance naturally, are most promising. Nevertheless, they are either on-grid model based methods whose performance are sensitive to off-grid DoAs or gridless methods which are computationally demanding. In this paper, we propose an off-grid DoA estimation algorithm based on the sparse covariance fitting criterion. We first consider a scenario in which the number of snapshots is larger than the array size. An algorithm is proposed by applying an off-grid model, which takes into account the deviations between the discretized sampling grid and the true DoAs, to the sparse covariance fitting criterion. It estimates the on-grid parameters and the deviations of off-grid DoAs separately and thus is computationally efficient to implement. Then in the case where the number of snapshots is smaller than the array size, we propose to execute the DoA estimation algorithm iteratively under the stochastic maximum likelihood (SML) criterion. The estimation accuracy and computational efficiency of the proposed algorithms are demonstrated by computer simulations

    Deep generative models for solving geophysical inverse problems

    Get PDF
    My thesis presents several novel methods to facilitate solving large-scale inverse problems by utilizing recent advances in machine learning, and particularly deep generative modeling. Inverse problems involve reliably estimating unknown parameters of a physical model from indirect observed data that are noisy. Solving inverse problems presents primarily two challenges. The first challenge is to capture and incorporate prior knowledge into ill-posed inverse problems whose solutions cannot be uniquely identified. The second challenge is the computational complexity of solving inverse problems, particularly the cost of quantifying uncertainty. The main goal of this thesis is to address these issues by developing practical data-driven methods that are scalable to geophysical applications in which access to high-quality training data is often limited. There are six papers included in this thesis. A majority of these papers focus on addressing computational challenges associated with Bayesian inference and uncertainty quantification, while others focus on developing regularization techniques to improve inverse problem solution quality and accelerate the solution process. These papers demonstrate the applicability of the proposed methods to seismic imaging, a large-scale geophysical inverse problem with a computationally expensive forward operator for which sufficiently capturing the variability in the Earth's heterogeneous subsurface through a training dataset is challenging. The first two papers present computationally feasible methods of applying a class of methods commonly referred to as deep priors to seismic imaging and uncertainty quantification. I also present a systematic Bayesian approach to translate uncertainty in seismic imaging to uncertainty in downstream tasks performed on the image. The next two papers aim to address the reliability concerns surrounding data-driven methods for solving Bayesian inverse problems by leveraging variational inference formulations that offer the benefits of fully-learned posteriors while being directly informed by physics and data. The last two papers are concerned with correcting forward modeling errors where the first proposes an adversarially learned postprocessing step to attenuate numerical dispersion artifacts in wave-equation simulations due to coarse finite-difference discretizations, while the second trains a Fourier neural operator surrogate forward model in order to accelerate the qualification of uncertainty due to errors in the forward model parameterization.Ph.D

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue โ€œAdvances in Condition Monitoring, Optimization and Control for Complex Industrial Processesโ€, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Seismic Waves

    Get PDF
    The importance of seismic wave research lies not only in our ability to understand and predict earthquakes and tsunamis, it also reveals information on the Earth's composition and features in much the same way as it led to the discovery of Mohorovicic's discontinuity. As our theoretical understanding of the physics behind seismic waves has grown, physical and numerical modeling have greatly advanced and now augment applied seismology for better prediction and engineering practices. This has led to some novel applications such as using artificially-induced shocks for exploration of the Earth's subsurface and seismic stimulation for increasing the productivity of oil wells. This book demonstrates the latest techniques and advances in seismic wave analysis from theoretical approach, data acquisition and interpretation, to analyses and numerical simulations, as well as research applications. A review process was conducted in cooperation with sincere support by Drs. Hiroshi Takenaka, Yoshio Murai, Jun Matsushima, and Genti Toyokuni

    Microscopy Conference 2017 (MC 2017) - Proceedings

    Get PDF
    Das Dokument enthรคlt die Kurzfassungen der Beitrรคge aller Teilnehmer an der Mikroskopiekonferenz "MC 2017", die vom 21. bis 25.08.2017, in Lausanne stattfand

    Microscopy Conference 2017 (MC 2017) - Proceedings

    Get PDF
    Das Dokument enthรคlt die Kurzfassungen der Beitrรคge aller Teilnehmer an der Mikroskopiekonferenz "MC 2017", die vom 21. bis 25.08.2017, in Lausanne stattfand

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conwayโ€™s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MRโ€™s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithmsโ€™ performance on Amazonโ€™s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore