422 research outputs found

    Parameterized Inapproximability of the Minimum Distance Problem over All Fields and the Shortest Vector Problem in All ℓpNorms

    Get PDF
    Funding Information: M. Cheraghchi’s research was partially supported by the National Science Foundation under Grants No. CCF-2006455 and CCF-2107345. V. Guruswami’s research was supported in part by NSF grants CCF-2228287 and CCF-2210823 and a Simons Investigator award. J. Ribeiro’s research was supported by NOVA LINCS (UIDB/04516/2020) with the financial support of FCT - Fundação para a Ciência e a Tecnologia and by the NSF grants CCF-1814603 and CCF-2107347 and the following grants of Vipul Goyal: the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding award. Publisher Copyright: © 2023 ACM.We prove that the Minimum Distance Problem (MDP) on linear codes over any fixed finite field and parameterized by the input distance bound is W[1]-hard to approximate within any constant factor. We also prove analogous results for the parameterized Shortest Vector Problem (SVP) on integer lattices. Specifically, we prove that SVP in the p norm is W[1]-hard to approximate within any constant factor for any fixed p >1 and W[1]-hard to approximate within a factor approaching 2 for p=1. (We show hardness under randomized reductions in each case.) These results answer the main questions left open (and explicitly posed) by Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi, and Marx (Journal of the ACM, 2021) on the complexity of parameterized MDP and SVP. For MDP, they established similar hardness for binary linear codes and left the case of general fields open. For SVP in p norms with p > 1, they showed inapproximability within some constant factor (depending on p) and left open showing such hardness for arbitrary constant factors. They also left open showing W[1]-hardness even of exact SVP in the 1 norm.publishersversionpublishe
    corecore