501 research outputs found

    Building Large k-Cores from Sparse Graphs

    Get PDF
    A popular model to measure network stability is the k-core, that is the maximal induced subgraph in which every vertex has degree at least k. For example, k-cores are commonly used to model the unraveling phenomena in social networks. In this model, users having less than k connections within the network leave it, so the remaining users form exactly the k-core. In this paper we study the question of whether it is possible to make the network more robust by spending only a limited amount of resources on new connections. A mathematical model for the k-core construction problem is the following Edge k-Core optimization problem. We are given a graph G and integers k, b and p. The task is to ensure that the k-core of G has at least p vertices by adding at most b edges. The previous studies on Edge k-Core demonstrate that the problem is computationally challenging. In particular, it is NP-hard when k = 3, W[1]-hard when parameterized by k+b+p (Chitnis and Talmon, 2018), and APX-hard (Zhou et al, 2019). Nevertheless, we show that there are efficient algorithms with provable guarantee when the k-core has to be constructed from a sparse graph with some additional structural properties. Our results are - When the input graph is a forest, Edge k-Core is solvable in polynomial time; - Edge k-Core is fixed-parameter tractable (FPT) when parameterized by the minimum size of a vertex cover in the input graph. On the other hand, with such parameterization, the problem does not admit a polynomial kernel subject to a widely-believed assumption from complexity theory; - Edge k-Core is FPT parameterized by the treewidth of the graph plus k. This improves upon a result of Chitnis and Talmon by not requiring b to be small. Each of our algorithms is built upon a new graph-theoretical result interesting in its own

    Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers

    Full text link
    The nested parallel (a.k.a. fork-join) model is widely used for writing parallel programs. However, the two composition constructs, i.e. "\parallel" (parallel) and ";;" (serial), are insufficient in expressing "partial dependencies" or "partial parallelism" in a program. We propose a new dataflow composition construct "\leadsto" to express partial dependencies in algorithms in a processor- and cache-oblivious way, thus extending the Nested Parallel (NP) model to the \emph{Nested Dataflow} (ND) model. We redesign several divide-and-conquer algorithms ranging from dense linear algebra to dynamic-programming in the ND model and prove that they all have optimal span while retaining optimal cache complexity. We propose the design of runtime schedulers that map ND programs to multicore processors with multiple levels of possibly shared caches (i.e, Parallel Memory Hierarchies) and provide theoretical guarantees on their ability to preserve locality and load balance. For this, we adapt space-bounded (SB) schedulers for the ND model. We show that our algorithms have increased "parallelizability" in the ND model, and that SB schedulers can use the extra parallelizability to achieve asymptotically optimal bounds on cache misses and running time on a greater number of processors than in the NP model. The running time for the algorithms in this paper is O(i=0h1Q(t;σMi)Cip)O\left(\frac{\sum_{i=0}^{h-1} Q^{*}({\mathsf t};\sigma\cdot M_i)\cdot C_i}{p}\right), where QQ^{*} is the cache complexity of task t{\mathsf t}, CiC_i is the cost of cache miss at level-ii cache which is of size MiM_i, σ(0,1)\sigma\in(0,1) is a constant, and pp is the number of processors in an hh-level cache hierarchy

    {SETH}-Based Lower Bounds for Subset Sum and Bicriteria Path

    Get PDF
    Subset-Sum and k-SAT are two of the most extensively studied problems in computer science, and conjectures about their hardness are among the cornerstones of fine-grained complexity. One of the most intriguing open problems in this area is to base the hardness of one of these problems on the other. Our main result is a tight reduction from k-SAT to Subset-Sum on dense instances, proving that Bellman's 1962 pseudo-polynomial O(T)O^{*}(T)-time algorithm for Subset-Sum on nn numbers and target TT cannot be improved to time T1ε2o(n)T^{1-\varepsilon}\cdot 2^{o(n)} for any ε>0\varepsilon>0, unless the Strong Exponential Time Hypothesis (SETH) fails. This is one of the strongest known connections between any two of the core problems of fine-grained complexity. As a corollary, we prove a "Direct-OR" theorem for Subset-Sum under SETH, offering a new tool for proving conditional lower bounds: It is now possible to assume that deciding whether one out of NN given instances of Subset-Sum is a YES instance requires time (NT)1o(1)(N T)^{1-o(1)}. As an application of this corollary, we prove a tight SETH-based lower bound for the classical Bicriteria s,t-Path problem, which is extensively studied in Operations Research. We separate its complexity from that of Subset-Sum: On graphs with mm edges and edge lengths bounded by LL, we show that the O(Lm)O(Lm) pseudo-polynomial time algorithm by Joksch from 1966 cannot be improved to O~(L+m)\tilde{O}(L+m), in contrast to a recent improvement for Subset Sum (Bringmann, SODA 2017)
    corecore