54 research outputs found

    Linear Time Parameterized Algorithms via Skew-Symmetric Multicuts

    Full text link
    A skew-symmetric graph (D=(V,A),σ)(D=(V,A),\sigma) is a directed graph DD with an involution σ\sigma on the set of vertices and arcs. In this paper, we introduce a separation problem, dd-Skew-Symmetric Multicut, where we are given a skew-symmetric graph DD, a family of T\cal T of dd-sized subsets of vertices and an integer kk. The objective is to decide if there is a set X⊆AX\subseteq A of kk arcs such that every set JJ in the family has a vertex vv such that vv and σ(v)\sigma(v) are in different connected components of D′=(V,A∖(X∪σ(X))D'=(V,A\setminus (X\cup \sigma(X)). In this paper, we give an algorithm for this problem which runs in time O((4d)k(m+n+ℓ))O((4d)^{k}(m+n+\ell)), where mm is the number of arcs in the graph, nn the number of vertices and ℓ\ell the length of the family given in the input. Using our algorithm, we show that Almost 2-SAT has an algorithm with running time O(4kk4ℓ)O(4^kk^4\ell) and we obtain algorithms for {\sc Odd Cycle Transversal} and {\sc Edge Bipartization} which run in time O(4kk4(m+n))O(4^kk^4(m+n)) and O(4kk5(m+n))O(4^kk^5(m+n)) respectively. This resolves an open problem posed by Reed, Smith and Vetta [Operations Research Letters, 2003] and improves upon the earlier almost linear time algorithm of Kawarabayashi and Reed [SODA, 2010]. We also show that Deletion q-Horn Backdoor Set Detection is a special case of 3-Skew-Symmetric Multicut, giving us an algorithm for Deletion q-Horn Backdoor Set Detection which runs in time O(12kk5ℓ)O(12^kk^5\ell). This gives the first fixed-parameter tractable algorithm for this problem answering a question posed in a paper by a superset of the authors [STACS, 2013]. Using this result, we get an algorithm for Satisfiability which runs in time O(12kk5ℓ)O(12^kk^5\ell) where kk is the size of the smallest q-Horn deletion backdoor set, with ℓ\ell being the length of the input formula

    Representative set statements for delta-matroids and the Mader delta-matroid

    Full text link
    We present representative sets-style statements for linear delta-matroids, which are set systems that generalize matroids, with important connections to matching theory and graph embeddings. Furthermore, our proof uses a new approach of sieving polynomial families, which generalizes the linear algebra approach of the representative sets lemma to a setting of bounded-degree polynomials. The representative sets statements for linear delta-matroids then follow by analyzing the Pfaffian of the skew-symmetric matrix representing the delta-matroid. Applying the same framework to the determinant instead of the Pfaffian recovers the representative sets lemma for linear matroids. Altogether, this significantly extends the toolbox available for kernelization. As an application, we show an exact sparsification result for Mader networks: Let G=(V,E)G=(V,E) be a graph and T\mathcal{T} a partition of a set of terminals T⊆V(G)T \subseteq V(G), ∣T∣=k|T|=k. A T\mathcal{T}-path in GG is a path with endpoints in distinct parts of T\mathcal{T} and internal vertices disjoint from TT. In polynomial time, we can derive a graph G′=(V′,E′)G'=(V',E') with T⊆V(G′)T \subseteq V(G'), such that for every subset S⊆TS \subseteq T there is a packing of T\mathcal{T}-paths with endpoints SS in GG if and only if there is one in G′G', and ∣V(G′)∣=O(k3)|V(G')|=O(k^3). This generalizes the (undirected version of the) cut-covering lemma, which corresponds to the case that T\mathcal{T} contains only two blocks. To prove the Mader network sparsification result, we furthermore define the class of Mader delta-matroids, and show that they have linear representations. This should be of independent interest

    Multi-Budgeted Directed Cuts

    Get PDF
    In this paper, we study multi-budgeted variants of the classic minimum cut problem and graph separation problems that turned out to be important in parameterized complexity: Skew Multicut and Directed Feedback Arc Set. In our generalization, we assign colors 1,2,...,l to some edges and give separate budgets k_1,k_2,...,k_l for colors 1,2,...,l. For every color i in {1,...,l}, let E_i be the set of edges of color i. The solution C for the multi-budgeted variant of a graph separation problem not only needs to satisfy the usual separation requirements (i.e., be a cut, a skew multicut, or a directed feedback arc set, respectively), but also needs to satisfy that |C cap E_i| <= k_i for every i in {1,...,l}. Contrary to the classic minimum cut problem, the multi-budgeted variant turns out to be NP-hard even for l = 2. We propose FPT algorithms parameterized by k=k_1 +...+ k_l for all three problems. To this end, we develop a branching procedure for the multi-budgeted minimum cut problem that measures the progress of the algorithm not by reducing k as usual, by but elevating the capacity of some edges and thus increasing the size of maximum source-to-sink flow. Using the fact that a similar strategy is used to enumerate all important separators of a given size, we merge this process with the flow-guided branching and show an FPT bound on the number of (appropriately defined) important multi-budgeted separators. This allows us to extend our algorithm to the Skew Multicut and Directed Feedback Arc Set problems. Furthermore, we show connections of the multi-budgeted variants with weighted variants of the directed cut problems and the Chain l-SAT problem, whose parameterized complexity remains an open problem. We show that these problems admit a bounded-in-parameter number of "maximally pushed" solutions (in a similar spirit as important separators are maximally pushed), giving somewhat weak evidence towards their tractability

    Hardness of Graph Pricing through Generalized Max-Dicut

    Full text link
    The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any ϵ>0\epsilon > 0, there exists δ>0\delta > 0 such that the integrality gap of nδn^{\delta}-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/2 + ϵ\epsilon. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut(TT), which has a domain size T+1T + 1 for every T≥1T \geq 1. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation-preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page

    Almost tight lower bounds for hard cutting problems in embedded graphs

    Get PDF
    • …
    corecore