2,113 research outputs found

    Collapsibility to a subcomplex of a given dimension is NP-complete

    Full text link
    In this paper we extend the works of Tancer and of Malgouyres and Franc\'es, showing that (d,k)(d,k)-collapsibility is NP-complete for d≥k+2d\geq k+2 except (2,0)(2,0). By (d,k)(d,k)-collapsibility we mean the following problem: determine whether a given dd-dimensional simplicial complex can be collapsed to some kk-dimensional subcomplex. The question of establishing the complexity status of (d,k)(d,k)-collapsibility was asked by Tancer, who proved NP-completeness of (d,0)(d,0) and (d,1)(d,1)-collapsibility (for d≥3d\geq 3). Our extended result, together with the known polynomial-time algorithms for (2,0)(2,0) and d=k+1d=k+1, answers the question completely

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Discrete Morse theory for computing cellular sheaf cohomology

    Full text link
    Sheaves and sheaf cohomology are powerful tools in computational topology, greatly generalizing persistent homology. We develop an algorithm for simplifying the computation of cellular sheaf cohomology via (discrete) Morse-theoretic techniques. As a consequence, we derive efficient techniques for distributed computation of (ordinary) cohomology of a cell complex.Comment: 19 pages, 1 Figure. Added Section 5.

    A new solution approach to polynomial LPV system analysis and synthesis

    Get PDF
    Based on sum-of-squares (SOS) decomposition, we propose a new solution approach for polynomial LPV system analysis and control synthesis problems. Instead of solving matrix variables over a positive definite cone, the SOS approach tries to find a suitable decomposition to verify the positiveness of given polynomials. The complexity of the SOS-based numerical method is polynomial of the problem size. This approach also leads to more accurate solutions to LPV systems than most existing relaxation methods. Several examples have been used to demonstrate benefits of the SOS-based solution approach

    Parametrized Complexity of Expansion Height

    Get PDF
    Deciding whether two simplicial complexes are homotopy equivalent is a fundamental problem in topology, which is famously undecidable. There exists a combinatorial refinement of this concept, called simple-homotopy equivalence: two simplicial complexes are of the same simple-homotopy type if they can be transformed into each other by a sequence of two basic homotopy equivalences, an elementary collapse and its inverse, an elementary expansion. In this article we consider the following related problem: given a 2-dimensional simplicial complex, is there a simple-homotopy equivalence to a 1-dimensional simplicial complex using at most p expansions? We show that the problem, which we call the erasability expansion height, is W[P]-complete in the natural parameter p
    • …
    corecore