43,296 research outputs found

    Data Reductions and Combinatorial Bounds for Improved Approximation Algorithms

    Full text link
    Kernelization algorithms in the context of Parameterized Complexity are often based on a combination of reduction rules and combinatorial insights. We will expose in this paper a similar strategy for obtaining polynomial-time approximation algorithms. Our method features the use of approximation-preserving reductions, akin to the notion of parameterized reductions. We exemplify this method to obtain the currently best approximation algorithms for \textsc{Harmless Set}, \textsc{Differential} and \textsc{Multiple Nonblocker}, all of them can be considered in the context of securing networks or information propagation

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    09511 Abstracts Collection -- Parameterized complexity and approximation algorithms

    Get PDF
    From 14. 12. 2009 to 17. 12. 2009., the Dagstuhl Seminar 09511 ``Parameterized complexity and approximation algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    Parameterized complexity and polynomial-time approximation schemes

    Get PDF
    According to the theory of NPcompleteness, many problems that have important realworld applications are NPhard. This excludes the possibility of solving them in polynomial time unless P=NP. A number of approaches have been proposed in dealing with NPhard problems, among them are approximation algorithms and parameterized algorithms. The study of approximation algorithms tries to find good enough solutions instead of optimal solutions in polynomial time, while parameterized algorithms try to give exact solutions when a natural parameter is small. In this thesis, we study the structural properties of parameterized computation and approximation algorithms for NP optimization problems. In particular, we investigate the relationship between parameterized complexity and polynomialtime approximation scheme (PTAS) for NP optimization problems. We give nice characterizations for two important subclasses in PTAS: Fully Polynomial Time Approximation Scheme (FPTAS) and Effcient Polynomial Time Approximation Scheme (EPTAS), using the theory of parameterized complexity. Our characterization of the class FPTAS has its advantages over the former characterizations, and our characterization of EPTAS is the first systematic investigation of this new but important approximation class. We develop new techniques to derive strong computational lower bounds for certain parameterized problems based on the theory of parameterized complexity. For example, we prove that unless an unlikely collapse occurs in parameterized complexity theory, the clique problem could not be solved in time O(f (k)no(k)) for any function f . This lower bound matches the upper bound of the trivial algorithm that simply enumerates and checks all subsets of k vertices in the given graph of n vertices. We then extend our techniques to derive computational lower bounds for PTAS and EPTAS algorithms of NP optimization problems. We prove that certain NP optimization problems with known PTAS algorithms have no PTAS algorithms of running time O(f (1/Epsilon)no(1/Epsilon)) for any function f . Therefore, for these NP optimization problems, although theoretically they can be approximated in polynomial time to an arbitrarily small error bound Epsilon, they have no practically effective approximation algorithms for small error bound Epsilon. To our knowledge, this is the first time such lower bound results have been derived for PTAS algorithms. This seems to open a new direction for the study of computational lower bounds on the approximability of NP optimization problems

    Parameterized Complexity Classification for Interval Constraints

    Full text link
    Constraint satisfaction problems form a nicely behaved class of problems that lends itself to complexity classification results. From the point of view of parameterized complexity, a natural task is to classify the parameterized complexity of MinCSP problems parameterized by the number of unsatisfied constraints. In other words, we ask whether we can delete at most kk constraints, where kk is the parameter, to get a satisfiable instance. In this work, we take a step towards classifying the parameterized complexity for an important infinite-domain CSP: Allen's interval algebra (IA). This CSP has closed intervals with rational endpoints as domain values and employs a set AA of 13 basic comparison relations such as ``precedes'' or ``during'' for relating intervals. IA is a highly influential and well-studied formalism within AI and qualitative reasoning that has numerous applications in, for instance, planning, natural language processing and molecular biology. We provide an FPT vs. W[1]-hard dichotomy for MinCSP(Γ)(\Gamma) for all Γ⊆A\Gamma \subseteq A. IA is sometimes extended with unions of the relations in AA or first-order definable relations over AA, but extending our results to these cases would require first solving the parameterized complexity of Directed Symmetric Multicut, which is a notorious open problem. Already in this limited setting, we uncover connections to new variants of graph cut and separation problems. This includes hardness proofs for simultaneous cuts or feedback arc set problems in directed graphs, as well as new tractable cases with algorithms based on the recently introduced flow augmentation technique. Given the intractability of MinCSP(A)(A) in general, we then consider (parameterized) approximation algorithms and present a factor-22 fpt-approximation algorithm
    • …
    corecore