131 research outputs found

    Parameterized bounded-depth Frege is not optimal

    Get PDF
    A general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider [9]. There the authors concentrate on tree-like Parameterized Resolution-a parameterized version of classical Resolution-and their gap complexity theorem implies lower bounds for that system. The main result of the present paper significantly improves upon this by showing optimal lower bounds for a parameterized version of bounded-depth Frege. More precisely, we prove that the pigeonhole principle requires proofs of size n in parameterized bounded-depth Frege, and, as a special case, in dag-like Parameterized Resolution. This answers an open question posed in [9]. In the opposite direction, we interpret a well-known technique for FPT algorithms as a DPLL procedure for Parameterized Resolution. Its generalization leads to a proof search algorithm for Parameterized Resolution that in particular shows that tree-like Parameterized Resolution allows short refutations of all parameterized contradictions given as bounded-width CNF's

    Automating Resolution is NP-Hard

    Get PDF
    We show that the problem of finding a Resolution refutation that is at most polynomially longer than a shortest one is NP-hard. In the parlance of proof complexity, Resolution is not automatizable unless P = NP. Indeed, we show it is NP-hard to distinguish between formulas that have Resolution refutations of polynomial length and those that do not have subexponential length refutations. This also implies that Resolution is not automatizable in subexponential time or quasi-polynomial time unless NP is included in SUBEXP or QP, respectively

    Parameterized complexity of DPLL search procedures

    Get PDF
    We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game which models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n steps for a non-trivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked in [11] of understanding the Resolution complexity of this family of formulas

    Automating Resolution is NP-hard

    Get PDF
    We show that the problem of finding a Resolution refutation that is at most polynomially longer than a shortest one is NP-hard. In the parlance of proof complexity, Resolution is not automatizable unless P = NP. Indeed, we show that it is NP-hard to distinguish between formulas that have Resolution refutations of polynomial length and those that do not have subexponential length refutations. This also implies that Resolution is not automatizable in subexponential time or quasi-polynomial time unless~NP is included in SUBEXP or QP, respectively.Peer ReviewedPostprint (author's final draft

    Optimal algorithms and proofs (Dagstuhl Seminar 14421)

    Get PDF
    This report documents the programme and the outcomes of the Dagstuhl Seminar 14421 "Optimal algorithms and proofs". The seminar brought together researchers working in computational and proof complexity, logic, and the theory of approximations. Each of these areas has its own, but connected notion of optimality; and the main aim of the seminar was to bring together researchers from these different areas, for an exchange of ideas, techniques, and open questions, thereby triggering new research collaborations across established research boundaries

    Kernelization, Proof Complexity and Social Choice

    Get PDF
    corecore