65 research outputs found

    CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution

    Full text link
    The migration of computation to the cloud has raised privacy concerns as sensitive data becomes vulnerable to attacks since they need to be decrypted for processing. Fully Homomorphic Encryption (FHE) mitigates this issue as it enables meaningful computations to be performed directly on encrypted data. Nevertheless, FHE is orders of magnitude slower than unencrypted computation, which hinders its practicality and adoption. Therefore, improving FHE performance is essential for its real world deployment. In this paper, we present a year-long effort to design, implement, fabricate, and post-silicon validate a hardware accelerator for Fully Homomorphic Encryption dubbed CoFHEE. With a design area of 12mm212mm^2, CoFHEE aims to improve performance of ciphertext multiplications, the most demanding arithmetic FHE operation, by accelerating several primitive operations on polynomials, such as polynomial additions and subtractions, Hadamard product, and Number Theoretic Transform. CoFHEE supports polynomial degrees of up to n=214n = 2^{14} with a maximum coefficient sizes of 128 bits, while it is capable of performing ciphertext multiplications entirely on chip for n≤213n \leq 2^{13}. CoFHEE is fabricated in 55nm CMOS technology and achieves 250 MHz with our custom-built low-power digital PLL design. In addition, our chip includes two communication interfaces to the host machine: UART and SPI. This manuscript presents all steps and design techniques in the ASIC development process, ranging from RTL design to fabrication and validation. We evaluate our chip with performance and power experiments and compare it against state-of-the-art software implementations and other ASIC designs. Developed RTL files are available in an open-source repository

    Design of Low Power, High Speed Frequency Multiplier Based On DPLL for Clock Generation

    Get PDF
    A low-power and high-speed frequency multiplier for a DPLL-based clock generator is proposed to produce a multiplied clock with a high frequency and a greatest frequency rang. The proposed frequency multiplier devours low power and accomplishes a rapid activity. The proposed frequency multiplier minimizes the delay difference between the positive and negative edge generation paths. This is fabricated in a 0.12ÎĽm CMOS process technology and accomplished power utilization to a frequency ratio of 0.698mw, and it generates 59 phase differential clocksand has the maximum multiplication ratio of 33, and an output range of 100MHz

    Memory controller for vector processor

    Get PDF
    To manage power and memory wall affects, the HPC industry supports FPGA reconfigurable accelerators and vector processing cores for data-intensive scientific applications. FPGA based vector accelerators are used to increase the performance of high-performance application kernels. Adding more vector lanes does not affect the performance, if the processor/memory performance gap dominates. In addition if on/off-chip communication time becomes more critical than computation time, causes performance degradation. The system generates multiple delays due to application’s irregular data arrangement and complex scheduling scheme. Therefore, just like generic scalar processors, all sets of vector machine – vector supercomputers to vector microprocessors – are required to have data management and access units that improve the on/off-chip bandwidth and hide main memory latency. In this work, we propose an Advanced Programmable Vector Memory Controller (PVMC), which boosts noncontiguous vector data accesses by integrating descriptors of memory patterns, a specialized on-chip memory, a memory manager in hardware, and multiple DRAM controllers. We implemented and validated the proposed system on an Altera DE4 FPGA board. The PVMC is also integrated with ARM Cortex-A9 processor on Xilinx Zynq All-Programmable System on Chip architecture. We compare the performance of a system with vector and scalar processors without PVMC. When compared with a baseline vector system, the results show that the PVMC system transfers data sets up to 1.40x to 2.12x faster, achieves between 2.01x to 4.53x of speedup for 10 applications and consumes 2.56 to 4.04 times less energy.Peer ReviewedPostprint (author's final draft

    Rapid SoC Design: On Architectures, Methodologies and Frameworks

    Full text link
    Modern applications like machine learning, autonomous vehicles, and 5G networking require an order of magnitude boost in processing capability. For several decades, chip designers have relied on Moore’s Law - the doubling of transistor count every two years to deliver improved performance, higher energy efficiency, and an increase in transistor density. With the end of Dennard’s scaling and a slowdown in Moore’s Law, system architects have developed several techniques to deliver on the traditional performance and power improvements we have come to expect. More recently, chip designers have turned towards heterogeneous systems comprised of more specialized processing units to buttress the traditional processing units. These specialized units improve the overall performance, power, and area (PPA) metrics across a wide variety of workloads and applications. While the GPU serves as a classical example, accelerators for machine learning, approximate computing, graph processing, and database applications have become commonplace. This has led to an exponential growth in the variety (and count) of these compute units found in modern embedded and high-performance computing platforms. The various techniques adopted to combat the slowing of Moore’s Law directly translates to an increase in complexity for modern system-on-chips (SoCs). This increase in complexity in turn leads to an increase in design effort and validation time for hardware and the accompanying software stacks. This is further aggravated by fabrication challenges (photo-lithography, tooling, and yield) faced at advanced technology nodes (below 28nm). The inherent complexity in modern SoCs translates into increased costs and time-to-market delays. This holds true across the spectrum, from mobile/handheld processors to high-performance data-center appliances. This dissertation presents several techniques to address the challenges of rapidly birthing complex SoCs. The first part of this dissertation focuses on foundations and architectures that aid in rapid SoC design. It presents a variety of architectural techniques that were developed and leveraged to rapidly construct complex SoCs at advanced process nodes. The next part of the dissertation focuses on the gap between a completed design model (in RTL form) and its physical manifestation (a GDS file that will be sent to the foundry for fabrication). It presents methodologies and a workflow for rapidly walking a design through to completion at arbitrary technology nodes. It also presents progress on creating tools and a flow that is entirely dependent on open-source tools. The last part presents a framework that not only speeds up the integration of a hardware accelerator into an SoC ecosystem, but emphasizes software adoption and usability.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168119/1/ajayi_1.pd

    Mixed signal design flow, a mixed signal PLL case study

    Get PDF
    Mixed-signal designs are becoming more and more complex every day. In order to adapt to the new market requirements, a formal process for design and verification of mixed signal systems i. e. top-down design and bottom-up verification methodology is required. This methodology has already been established for digital design. The goal of this research is to propose a new design methodology for mixed signal systems. In the first two chapters of this thesis, the need for a mixed signal design flow based on top-down design methodology will be discussed. The proposed design flow is based on behavioral modeling of the mixed signal system using one of the mixed signal behavioral modeling languages. These models can be used for design and verification through different steps of the design from system level modeling to final physical design. The other advantage of the proposed flow is analog and digital co-design. In the remaining chapters of this thesis, the proposed design flow was verified by designing an 800 MHz mixed signal PLL. The PLL uses a charge pump phase frequency detector, a single capacitor loop filter, and a feed forward error correction architecture using an active damping control circuit instead of passive resistor in loop filter. The design was done in 0. 18- µ m CMOS process technology

    Molecular modeling of proteins and peptides related to cell attachment in vivo and in vitro

    Get PDF
    Polypeptides constitute half of the dry mass of the cell, they form the bulk of the extracellular matrix (ECM), and they are a common element of extra- and intracellular signaling pathways. There is increasing interest in the development of computational methods in polypeptide and protein engineering on all length scales. This research concerns the development of computational methods for study of polypeptide interactions related to cell attachment in vivo and in vitro. Polypeptides are inherently biocompatible, and an astronomical range of unique sequences can be designed and realized in massive quantities by modern methods of synthesis and purification. These macromolecules therefore constitute an intriguing class of polyelectrolyte for biomedically-oriented multilayer film engineering (Haynie et al., 2005), Applications of such films include artificial cells, drug delivery systems, and implant device coatings, cell/tissue scaffolds (ECM mimics). The plasma membrane-associated cytoplasmic protein tensin is involved in cell attachment, cell migration, embryogenesis, and wound healing. The tensin polypeptide comprises several modular domains implicated in signal transduction. It has been shown that the N-terminal region of tensin is a close homolog of a tumor suppressor that is highly mutated in glioblastomas, breast cancer, and other cancers. There are two related areas of development in this work: Polypeptide multilayer films, a type of ECM mimics, and the molecular physiology of tensin. Two studies have been carried out on polypeptide multilayer films: aggregates of the model polypeptides poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA), and interpolyelectrolytes complexes (IPECs) of designed peptides. Molecular models of all known domain of tensin have been developed by homology modeling. The binding properties of the two domain of tensin have been studied. Molecular dynamics (MD) simulations of PLL/PLGA aggregates suggest that both hydrophobic interactions and electrostatics interactions play a significant role in stabilizing polypeptide multilayer structures. The approach provides a general means to determine how non-covalent interactions contribute to the structure and stability of polypeptide multilayer films. MD simulations of designed polypeptide complexes have been carried out in vacuum and in implicit solvent. The simulation results correlate with experimental data on the same peptides. Energy minimization and MD study of tensin domain-peptide complexes has provided insight on biofunctionality of the tensin molecule and thereby its role in cell adhesion. Such knowledge will be important for determining the molecular basis of cell adhesion in health and disease and engineering treatments of abnormalities involving cell attachment

    Towards Intelligent Data Acquisition Systems with Embedded Deep Learning on MPSoC

    Get PDF
    Large-scale scientific experiments rely on dedicated high-performance data-acquisition systems to sample, readout, analyse, and store experimental data. However, with the rapid development in detector technology in various fields, the number of channels and the data rate are increasing. For trigger and control tasks data acquisition systems needs to satisfy real-time constraints, enable short-time latency and provide the possibility to integrate intelligent data processing. During recent years machine learning approaches have been used successfully in many applications. This dissertation will study how machine learning techniques can be integrated already in the data acquisition of large-scale experiments. A universal data acquisition platform for multiple data channels has been developed. Different machine learning implementation methods and application have been realized using this system. On the hardware side, recent FPGAs do not only provide high-performance parallel logic but more and more additional features, like ultra-fast transceivers and embedded ARM processors. TSMC\u27s 16nm FinFET Plus (16FF+) 3D transistor technology enables Xilinx in the Zynq UltraScale+ FPGA devices to increase the performance/watt ratio by 2 to 5 times compared to their previous generation. The selected main processor ZU11EG owns 32 GTH transceivers where each one could operate up to 16.316.3 Gb/s and 16 GTY transceivers where each of them could operate up to 32.7532.75 Gb/s. These transceivers are routed to x16 lanes Gen 33/44 PCIe, 1212 lanes full-duplex FireFly electrical/optical data link and VITA 57.4 FMC+ connector. The new Zynq UltraScale+ device provides at least three major advantages for advanced data acquisition systems: First, the 16nm FinFET+ programmable logic (PL) provides high-speed readout capabilities by high-speed transceivers; second, built-in quad-core 64-bit ARM Cortex-A53 processor enable host embedded Linux system. Thus, webservers, slow control and monitoring application could be realized in a embedded processor environment; third, the Zynq Multiprocessor System-on-Chip technology connects programmable logic and microprocessors. In this thesis, the benefits of such architectures for the integration of machine learning algorithms in data acquisition systems and control application are demonstrated. On the algorithm side, there have been many achievements in the field of machine learning over the last decades. Existing machine learning algorithms split into several categories depending on how the learning phase is organized: Supervised Learning, Unsupervised Learning, Semi-Supervised Learning and Reinforcement Learning. Most commonly used in scientific applications are supervised learning and reinforcement learning. Supervised learning learns from the labelled input and output, and generates a function that could predict the future different input to the appropriate output. A common application instance is a classification. They have a wide difference in basic math theory, training, inference, and their implementation. One of the natural solutions is Application Specific Integrated Circuit (ASIC) Artificial Intelligence (AI) chips. A typical example is the Google Tensor Processing Unit (TPU), it could cover the training and inference for both supervised learning and reinforcement learning. One of the major issues is that such chip could not provide high data transferring bandwidth other than high compute power. As a comparison, the Xilinx UltraScale+ FPGA could also provide raw compute power and efficiency for all different data types down to a single bit. From a deployment point of view, the training part of supervised learning is typically performed by CPU/GPU/TPU on a fixed dataset. For reinforcement learning, the training phase is more complex. The algorithm needs to periodically interact with the controlled system and execute a Markov Decision Process (MDP). There is no static training dataset, but it is obtained in real-time. The time slot between each step depends on the dynamics of the controlled system. The inference is also bound to this sampling time because the algorithm needs to interact with the environment and decide the appropriate action for a response, then a higher demand on time is proposed. This thesis gives solutions for both training and inference of reinforcement learning. At first, the requirements are analyzed, then the algorithm is deduced from scratch, and training on the PS part of Zynq device is implemented, meanwhile the inference at FPGA side is proposed which is similar solution compared with supervised learning. The results for Policy Gradient show a lot of improvement over a CPU/GPU-based machine learning framework. The Deep Deterministic Policy Gradient also has improvement regarding both training latency and stability. This implementation method provides a low-latency approach for reinforcement learning on-field training process

    A novel parallel algorithm for surface editing and its FPGA implementation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophySurface modelling and editing is one of important subjects in computer graphics. Decades of research in computer graphics has been carried out on both low-level, hardware-related algorithms and high-level, abstract software. Success of computer graphics has been seen in many application areas, such as multimedia, visualisation, virtual reality and the Internet. However, the hardware realisation of OpenGL architecture based on FPGA (field programmable gate array) is beyond the scope of most of computer graphics researches. It is an uncultivated research area where the OpenGL pipeline, from hardware through the whole embedded system (ES) up to applications, is implemented in an FPGA chip. This research proposes a hybrid approach to investigating both software and hardware methods. It aims at bridging the gap between methods of software and hardware, and enhancing the overall performance for computer graphics. It consists of four parts, the construction of an FPGA-based ES, Mesa-OpenGL implementation for FPGA-based ESs, parallel processing, and a novel algorithm for surface modelling and editing. The FPGA-based ES is built up. In addition to the Nios II soft processor and DDR SDRAM memory, it consists of the LCD display device, frame buffers, video pipeline, and algorithm-specified module to support the graphics processing. Since there is no implementation of OpenGL ES available for FPGA-based ESs, a specific OpenGL implementation based on Mesa is carried out. Because of the limited FPGA resources, the implementation adopts the fixed-point arithmetic, which can offer faster computing and lower storage than the floating point arithmetic, and the accuracy satisfying the needs of 3D rendering. Moreover, the implementation includes Bézier-spline curve and surface algorithms to support surface modelling and editing. The pipelined parallelism and co-processors are used to accelerate graphics processing in this research. These two parallelism methods extend the traditional computation parallelism in fine-grained parallel tasks in the FPGA-base ESs. The novel algorithm for surface modelling and editing, called Progressive and Mixing Algorithm (PAMA), is proposed and implemented on FPGA-based ES’s. Compared with two main surface editing methods, subdivision and deformation, the PAMA can eliminate the large storage requirement and computing cost of intermediated processes. With four independent shape parameters, the PAMA can be used to model and edit freely the shape of an open or closed surface that keeps globally the zero-order geometric continuity. The PAMA can be applied independently not only FPGA-based ESs but also other platforms. With the parallel processing, small size, and low costs of computing, storage and power, the FPGA-based ES provides an effective hybrid solution to surface modelling and editing

    A novel access pattern-based multi-core memory architecture

    Get PDF
    Increasingly High-Performance Computing (HPC) applications run on heterogeneous multi-core platforms. The basic reason of the growing popularity of these architectures is their low power consumption, and high throughput oriented nature. However, this throughput imposes a requirement on the data to be supplied in a high throughput manner for the multi-core system. This results in the necessity of an efficient management of on-chip and off-chip memory data transfers, which is a significant challenge. Complex regular and irregular memory data transfer patterns are becoming widely dominant for a range of application domains including the scientific, image and signal processing. Data accesses can be arranged in independent patterns that an efficient memory management can exploit. The software based approaches using general purpose caches and on-chip memories are beneficial to some extent. However, the task of efficient data management for the throughput oriented devices could be improved by providing hardware mechanisms that exploit the knowledge of access patterns in memory management and scheduling of accesses for a heterogeneous multi-core architecture. The focus of this thesis is to present architectural explorations for a novel access pattern-based multi-core memory architecture. In general, the thesis covers four main aspects of memory system in this research. These aspects can be categorized as: i) Uni-core Memory System for Regular Data Pattern. ii) Multi-core Memory System for Regular Data Pattern. iii) Uni-core Memory System for Irregular Data Pattern. and iv) Multi-core Memory System for Irregular Data Pattern.Les aplicacions de computació d'alt rendiment (HPC) s'executen cada vegada més en plataformes heterogènies de múltiples nuclis. El motiu bàsic de la creixent popularitat d'aquestes arquitectures és el seu baix consum i la seva natura orientada a alt throughput. No obstant, aquest thoughput imposa el requeriment de que les dades es proporcionin al sistema també amb alt throughput. Això resulta en la necessitat de gestionar eficientment les trasferències de memòria (dins i fora del chip), un repte significatiu. Els patrons de transferències de memòria regulars però complexos així com els irregulars són cada vegada més dominants per a diversos dominis d'aplicacions, incloent el científic i el processat d'imagte i senyals. Aquests accessos a dades poden ser organitzats en patrons independents que un gestor de memòria eficient pot explotar. Els mètodes basats en programari emprant memòries cau de propòsit general i memòries al chip són beneficioses fins a cert punt. No obstant, la tasca de gestionar eficientment les transferències de dades per a dispositius orientats a throughput pot ser millorada oferint mecanismes hardware que explotin el coneixement dels patrons d'accés de les aplicacions, així com la planificació dels accessos a una arquitectura de múltiples nuclis. Aquesta tesis està enfocada a explorar una arquitectura de memòria novedosa per a processadors de múltiples nuclis, basada en els patrons d'accés. En general, la recerca de la tesis cobreix quatres aspectes principals del sistema de memòria. Aquests aspectes són: i) sistema de memòria per a un únic nucli amb patrons regulars, ii) sistema de memòria per a múltiples nuclis amb patrons regulars, iii) sistema de memòria per a un únic nucli amb patrons irregulars, iv) sistema de memòria per a múltiples nuclis amb patrons irregulars
    • …
    corecore