4,973 research outputs found

    Parameterized Algorithms for Matrix Completion with Radius Constraints

    Get PDF
    Considering matrices with missing entries, we study NP-hard matrix completion problems where the resulting completed matrix should have limited (local) radius. In the pure radius version, this means that the goal is to fill in the entries such that there exists a "center string" which has Hamming distance to all matrix rows as small as possible. In stringology, this problem is also known as Closest String with Wildcards. In the local radius version, the requested center string must be one of the rows of the completed matrix. Hermelin and Rozenberg [CPM 2014, TCS 2016] performed a parameterized complexity analysis for Closest String with Wildcards. We answer one of their open questions, fix a bug concerning a fixed-parameter tractability result in their work, and improve some running time upper bounds. For the local radius case, we reveal a computational complexity dichotomy. In general, our results indicate that, although being NP-hard as well, this variant often allows for faster (fixed-parameter) algorithms

    Binary Matrix Completion Under Diameter Constraints

    Get PDF

    Complexity of Combinatorial Matrix Completion With Diameter Constraints

    Full text link
    We thoroughly study a novel and still basic combinatorial matrix completion problem: Given a binary incomplete matrix, fill in the missing entries so that the resulting matrix has a specified maximum diameter (that is, upper-bounding the maximum Hamming distance between any two rows of the completed matrix) as well as a specified minimum Hamming distance between any two of the matrix rows. This scenario is closely related to consensus string problems as well as to recently studied clustering problems on incomplete data. We obtain an almost complete complexity dichotomy between polynomial-time solvable and NP-hard cases in terms of the minimum distance lower bound and the number of missing entries per row of the incomplete matrix. Further, we develop polynomial-time algorithms for maximum diameter three, which are based on Deza's theorem from extremal set theory. On the negative side we prove NP-hardness for diameter at least four. For the parameter number of missing entries per row, we show polynomial-time solvability when there is only one missing entry and NP-hardness when there can be at least two missing entries. In general, our algorithms heavily rely on Deza's theorem and the correspondingly identified sunflower structures pave the way towards solutions based on computing graph factors and solving 2-SAT instances

    Finding a Cluster in Incomplete Data

    Get PDF
    We study two variants of the fundamental problem of finding a cluster in incomplete data. In the problems under consideration, we are given a multiset of incomplete d-dimensional vectors over the binary domain and integers k and r, and the goal is to complete the missing vector entries so that the multiset of complete vectors either contains (i) a cluster of k vectors of radius at most r, or (ii) a cluster of k vectors of diameter at most r. We give tight characterizations of the parameterized complexity of the problems under consideration with respect to the parameters k, r, and a third parameter that captures the missing vector entries
    • …
    corecore