728 research outputs found

    Narrow sieves for parameterized paths and packings

    Full text link
    We present randomized algorithms for some well-studied, hard combinatorial problems: the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space; the constant bases of the exponentials are significantly smaller than in previous works. For example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with dd colors in time within a polynomial factor of O(2^{(d-1)n/2}). Our techniques build upon and generalize some recently published ideas by I. Koutis (ICALP 2009), R. Williams (IPL 2009), and A. Bj\"orklund (STACS 2010, FOCS 2010)

    Parameterized Rural Postman Problem

    Full text link
    The Directed Rural Postman Problem (DRPP) can be formulated as follows: given a strongly connected directed multigraph D=(V,A)D=(V,A) with nonnegative integral weights on the arcs, a subset RR of AA and a nonnegative integer \ell, decide whether DD has a closed directed walk containing every arc of RR and of total weight at most \ell. Let kk be the number of weakly connected components in the the subgraph of DD induced by RR. Sorge et al. (2012) ask whether the DRPP is fixed-parameter tractable (FPT) when parameterized by kk, i.e., whether there is an algorithm of running time O(f(k))O^*(f(k)) where ff is a function of kk only and the OO^* notation suppresses polynomial factors. Sorge et al. (2012) note that this question is of significant practical relevance and has been open for more than thirty years. Using an algebraic approach, we prove that DRPP has a randomized algorithm of running time O(2k)O^*(2^k) when \ell is bounded by a polynomial in the number of vertices in DD. We also show that the same result holds for the undirected version of DRPP, where DD is a connected undirected multigraph

    Exploiting c\mathbf{c}-Closure in Kernelization Algorithms for Graph Problems

    Full text link
    A graph is c-closed if every pair of vertices with at least c common neighbors is adjacent. The c-closure of a graph G is the smallest number such that G is c-closed. Fox et al. [ICALP '18] defined c-closure and investigated it in the context of clique enumeration. We show that c-closure can be applied in kernelization algorithms for several classic graph problems. We show that Dominating Set admits a kernel of size k^O(c), that Induced Matching admits a kernel with O(c^7*k^8) vertices, and that Irredundant Set admits a kernel with O(c^(5/2)*k^3) vertices. Our kernelization exploits the fact that c-closed graphs have polynomially-bounded Ramsey numbers, as we show

    Families with infants: a general approach to solve hard partition problems

    Full text link
    We introduce a general approach for solving partition problems where the goal is to represent a given set as a union (either disjoint or not) of subsets satisfying certain properties. Many NP-hard problems can be naturally stated as such partition problems. We show that if one can find a large enough system of so-called families with infants for a given problem, then this problem can be solved faster than by a straightforward algorithm. We use this approach to improve known bounds for several NP-hard problems as well as to simplify the proofs of several known results. For the chromatic number problem we present an algorithm with O((2ε(d))n)O^*((2-\varepsilon(d))^n) time and exponential space for graphs of average degree dd. This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput. Syst. 2010] that works for graphs of bounded maximum (as opposed to average) degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013]. For the traveling salesman problem we give an algorithm working in O((2ε(d))n)O^*((2-\varepsilon(d))^n) time and polynomial space for graphs of average degree dd. The previously known results of this kind is a polyspace algorithm by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and an exponential space algorithm for bounded average degree by Cygan and Pilipczuk [ICALP 2013]. For counting perfect matching in graphs of average degree~dd we present an algorithm with running time O((2ε(d))n/2)O^*((2-\varepsilon(d))^{n/2}) and polynomial space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at http://arxiv.org/abs/1410.220

    Counting Problems in Parameterized Complexity

    Get PDF
    This survey is an invitation to parameterized counting problems for readers with a background in parameterized algorithms and complexity. After an introduction to the peculiarities of counting complexity, we survey the parameterized approach to counting problems, with a focus on two topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings and Hamiltonian cycles in well-structured graphs. While this survey presupposes familiarity with parameterized algorithms and complexity, we aim at explaining all relevant notions from counting complexity in a self-contained way

    Counting edge-injective homomorphisms and matchings on restricted graph classes

    Get PDF
    We consider the #W[1]\#\mathsf{W}[1]-hard problem of counting all matchings with exactly kk edges in a given input graph GG; we prove that it remains #W[1]\#\mathsf{W}[1]-hard on graphs GG that are line graphs or bipartite graphs with degree 22 on one side. In our proofs, we use that kk-matchings in line graphs can be equivalently viewed as edge-injective homomorphisms from the disjoint union of kk length-22 paths into (arbitrary) host graphs. Here, a homomorphism from HH to GG is edge-injective if it maps any two distinct edges of HH to distinct edges in GG. We show that edge-injective homomorphisms from a pattern graph HH can be counted in polynomial time if HH has bounded vertex-cover number after removing isolated edges. For hereditary classes H\mathcal{H} of pattern graphs, we complement this result: If the graphs in H\mathcal{H} have unbounded vertex-cover number even after deleting isolated edges, then counting edge-injective homomorphisms with patterns from H\mathcal{H} is #W[1]\#\mathsf{W}[1]-hard. Our proofs rely on an edge-colored variant of Holant problems and a delicate interpolation argument; both may be of independent interest.Comment: 35 pages, 9 figure
    corecore