13,347 research outputs found

    The Implications of Skewed Risk Perception for a Dutch Coastal Land Market: Insights from an Agent-Based Computational Economics Model

    Get PDF
    Dutch coastal land markets are characterized by high amenity values but are threatened by potential coastal hazards, leading to high potential damage costs from flooding. Yet, Dutch residents generally perceive low or no flood risk. Using an agent-based land market model and Dutch survey data on risk perceptions and location preferences, this paper explores the patterns of land development and land rents produced by buyers with low, highly skewed risk perceptions. We find that, compared to representative agent and uniform risk perception models, the skewed risk perception distribution produces substantially more, high-valued development in risky coastal zones, potentially creating economically significant risks triggered by the current Dutch flood protection policy.land markets, risk perceptions, agent-based modeling, the Netherlands, survey, Community/Rural/Urban Development, Environmental Economics and Policy, Land Economics/Use, Research Methods/ Statistical Methods, Risk and Uncertainty,

    A dual framework for low-rank tensor completion

    Full text link
    One of the popular approaches for low-rank tensor completion is to use the latent trace norm regularization. However, most existing works in this direction learn a sparse combination of tensors. In this work, we fill this gap by proposing a variant of the latent trace norm that helps in learning a non-sparse combination of tensors. We develop a dual framework for solving the low-rank tensor completion problem. We first show a novel characterization of the dual solution space with an interesting factorization of the optimal solution. Overall, the optimal solution is shown to lie on a Cartesian product of Riemannian manifolds. Furthermore, we exploit the versatile Riemannian optimization framework for proposing computationally efficient trust region algorithm. The experiments illustrate the efficacy of the proposed algorithm on several real-world datasets across applications.Comment: Aceepted to appear in Advances of Nueral Information Processing Systems (NIPS), 2018. A shorter version appeared in the NIPS workshop on Synergies in Geometric Data Analysis 201

    mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data

    Get PDF
    We present the R-package mgm for the estimation of k-order Mixed Graphical Models (MGMs) and mixed Vector Autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package
    corecore