200 research outputs found

    FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

    Full text link
    Research has shown that convolutional neural networks contain significant redundancy, and high classification accuracy can be obtained even when weights and activations are reduced from floating point to binary values. In this paper, we present FINN, a framework for building fast and flexible FPGA accelerators using a flexible heterogeneous streaming architecture. By utilizing a novel set of optimizations that enable efficient mapping of binarized neural networks to hardware, we implement fully connected, convolutional and pooling layers, with per-layer compute resources being tailored to user-provided throughput requirements. On a ZC706 embedded FPGA platform drawing less than 25 W total system power, we demonstrate up to 12.3 million image classifications per second with 0.31 {\mu}s latency on the MNIST dataset with 95.8% accuracy, and 21906 image classifications per second with 283 {\mu}s latency on the CIFAR-10 and SVHN datasets with respectively 80.1% and 94.9% accuracy. To the best of our knowledge, ours are the fastest classification rates reported to date on these benchmarks.Comment: To appear in the 25th International Symposium on Field-Programmable Gate Arrays, February 201

    Combined Integer and Floating Point Multiplication Architecture(CIFM) for FPGAs and Its Reversible Logic Implementation

    Full text link
    In this paper, the authors propose the idea of a combined integer and floating point multiplier(CIFM) for FPGAs. The authors propose the replacement of existing 18x18 dedicated multipliers in FPGAs with dedicated 24x24 multipliers designed with small 4x4 bit multipliers. It is also proposed that for every dedicated 24x24 bit multiplier block designed with 4x4 bit multipliers, four redundant 4x4 multiplier should be provided to enforce the feature of self repairability (to recover from the faults). In the proposed CIFM reconfigurability at run time is also provided resulting in low power. The major source of motivation for providing the dedicated 24x24 bit multiplier stems from the fact that single precision floating point multiplier requires 24x24 bit integer multiplier for mantissa multiplication. A reconfigurable, self-repairable 24x24 bit multiplier (implemented with 4x4 bit multiply modules) will ideally suit this purpose, making FPGAs more suitable for integer as well floating point operations. A dedicated 4x4 bit multiplier is also proposed in this paper. Moreover, in the recent years, reversible logic has emerged as a promising technology having its applications in low power CMOS, quantum computing, nanotechnology, and optical computing. It is not possible to realize quantum computing without reversible logic. Thus, this paper also paper provides the reversible logic implementation of the proposed CIFM. The reversible CIFM designed and proposed here will form the basis of the completely reversible FPGAs.Comment: Published in the proceedings of the The 49th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2006), Puerto Rico, August 2006. Nominated for the Student Paper Award(12 papers are nominated for Student paper Award among all submissions

    Customizing floating-point units for FPGAs: Area-performance-standard trade-offs

    Get PDF
    The high integration density of current nanometer technologies allows the implementation of complex floating-point applications in a single FPGA. In this work the intrinsic complexity of floating-point operators is addressed targeting configurable devices and making design decisions providing the most suitable performance-standard compliance trade-offs. A set of floating-point libraries composed of adder/subtracter, multiplier, divisor, square root, exponential, logarithm and power function are presented. Each library has been designed taking into account special characteristics of current FPGAs, and with this purpose we have adapted the IEEE floating-point standard (software-oriented) to a custom FPGA-oriented format. Extended experimental results validate the design decisions made and prove the usefulness of reducing the format complexit

    Impact of the hardened floating-point cores on HIL technology

    Full text link
    The Hardware-In-the-Loop (HIL) technique is increasingly used for testing power electronics. FPGAs (Field-Programmable Gate Array) are becoming usual in this kind of emulation due to their acceleration capabilities. But even using FPGAs, it has not been possible to reach real time simulations when small integration steps are necessary (around 100 ns or lower) if floating-point representation is used. Fixed-point has been the solution, but at a high design effort cost. With the release of FPGAs with HFP (Hardened Floating-Point) cores – dedicated floating-point blocks implemented in silicon – the minimum achievable simulation step decreases significantly. This paper presents a comparison between HFP cores, floating-point in programmable logic and fixed-point for HIL models. Results show that both HFP-based and fixed-point arithmetic achieve a simulation step around 10 ns for a full-bridge converter model. A comparison regarding resolution and accuracy is also presented, because acceleration is not the only issue when decreasing the integration step. Numerical resolution also plays an important role, and 32-bit floating-point representation finds a double barrier: acceleration marked by technology, and numerical resolution. Both are explored in this paperThis work has been supported by the Spanish Ministerio deEconomía y Competitividad under project TEC2013-43017-

    Pipelining Of Double Precision Floating Point Division And Square Root Operations On Field-programmable Gate Arrays

    Get PDF
    Many space applications, such as vision-based systems, synthetic aperture radar, and radar altimetry rely increasingly on high data rate DSP algorithms. These algorithms use double precision floating point arithmetic operations. While most DSP applications can be executed on DSP processors, the DSP numerical requirements of these new space applications surpass by far the numerical capabilities of many current DSP processors. Since the tradition in DSP processing has been to use fixed point number representation, only recently have DSP processors begun to incorporate floating point arithmetic units, even though most of these units handle only single precision floating point addition/subtraction, multiplication, and occasionally division. While DSP processors are slowly evolving to meet the numerical requirements of newer space applications, FPGA densities have rapidly increased to parallel and surpass even the gate densities of many DSP processors and commodity CPUs. This makes them attractive platforms to implement compute-intensive DSP computations. Even in the presence of this clear advantage on the side of FPGAs, few attempts have been made to examine how wide precision floating point arithmetic, particularly division and square root operations, can perform on FPGAs to support these compute-intensive DSP applications. In this context, this thesis presents the sequential and pipelined designs of IEEE-754 compliant double floating point division and square root operations based on low radix digit recurrence algorithms. FPGA implementations of these algorithms have the advantage of being easily testable. In particular, the pipelined designs are synthesized based on careful partial and full unrolling of the iterations in the digit recurrence algorithms. In the overall, the implementations of the sequential and pipelined designs are common-denominator implementations which do not use any performance-enhancing embedded components such as multipliers and block memory. As these implementations exploit exclusively the fine-grain reconfigurable resources of Virtex FPGAs, they are easily portable to other FPGAs with similar reconfigurable fabrics without any major modifications. The pipelined designs of these two operations are evaluated in terms of area, throughput, and dynamic power consumption as a function of pipeline depth. Pipelining experiments reveal that the area overhead tends to remain constant regardless of the degree of pipelining to which the design is submitted, while the throughput increases with pipeline depth. In addition, these experiments reveal that pipelining reduces power considerably in shallow pipelines. Pipelining further these designs does not necessarily lead to significant power reduction. By partitioning these designs into deeper pipelines, these designs can reach throughputs close to the 100 MFLOPS mark by consuming a modest 1% to 8% of the reconfigurable fabric within a Virtex-II XC2VX000 (e.g., XC2V1000 or XC2V6000) FPGA
    • …
    corecore