2,563 research outputs found

    Parameterisation for abstract structured specifications

    Get PDF

    Modal logics for reasoning about object-based component composition

    Get PDF
    Component-oriented development of software supports the adaptability and maintainability of large systems, in particular if requirements change over time and parts of a system have to be modified or replaced. The software architecture in such systems can be described by components and their composition. In order to describe larger architectures, the composition concept becomes crucial. We will present a formal framework for component composition for object-based software development. The deployment of modal logics for defining components and component composition will allow us to reason about and prove properties of components and compositions

    Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?

    Get PDF
    In this paper we present and evaluate a Gibbs sampler for a Poisson regression model including spatial e ects. The approach is based on Frühwirth-Schnatter and Wagner (2004b) who show that by data augmentation using the introduction of two sequences of latent variables a Poisson regression model can be transformed into an approximate normal linear model. We show how this methodology can be extended to spatial Poisson regression models and give details of the resulting Gibbs sampler. In particular, the influence of model parameterisation and di erent update strategies on the mixing of the MCMC chains is discussed. The developed Gibbs samplers are analysed in two simulation studies and applied to model the expected number of claims for policyholders of a German car insurance company. The mixing of the Gibbs samplers depends crucially on the model parameterisation and the update schemes. The best mixing is achieved when collapsed algorithms are used, reasonable low autocorrelations for the spatial e ects are obtained in this case. For the regression e ects however, autocorrelations are rather high, especially for data with very low heterogeneity. For comparison a single component Metropolis Hastings algorithms is applied which displays very good mixing for all components. Although the Metropolis Hastings sampler requires a higher computational e ort, it outperforms the Gibbs samplers which would have to be run considerably longer in order to obtain the same precision of the parameters

    The foundational legacy of ASL

    Get PDF
    Abstract. We recall the kernel algebraic specification language ASL and outline its main features in the context of the state of research on algebraic specification at the time it was conceived in the early 1980s. We discuss the most significant new ideas in ASL and the influence they had on subsequent developments in the field and on our own work in particular.

    Dark energy properties from large future galaxy surveys

    Full text link
    We perform a detailed forecast on how well a {\sc Euclid}-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(wp)σ(wa))1(\sigma(w_{\mathrm p}) \sigma(w_a))^{-1}, we find a value of 690 for {\sc Euclid}-like data combined with {\sc Planck}-like measurements of the cosmic microwave background (CMB) anisotropies in a 10-dimensional cosmological parameter space, assuming a Λ\LambdaCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an \emph{optimistic} scenario in which w0w_0 deviates by as much as is currently observationally allowed from 1-1, models with c^s2=106\hat{c}_\mathrm{s}^2 = 10^{-6} and c^s2=1\hat{c}_\mathrm{s}^2 = 1 can be distinguished at more than 2σ2\sigma significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ1 \sigma precision of 0.015~eV, (abridged)Comment: 26 pages, 5 figures, matches JCAP versio

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored

    Propriety of Posteriors in Structured Additive Regression Models: Theory and Empirical Evidence

    Get PDF
    Structured additive regression comprises many semiparametric regression models such as generalized additive (mixed) models, geoadditive models, and hazard regression models within a unified framework. In a Bayesian formulation, nonparametric functions, spatial effects and further model components are specified in terms of multivariate Gaussian priors for high-dimensional vectors of regression coefficients. For several model terms, such as penalised splines or Markov random fields, these Gaussian prior distributions involve rank-deficient precision matrices, yielding partially improper priors. Moreover, hyperpriors for the variances (corresponding to inverse smoothing parameters) may also be specified as improper, e.g. corresponding to Jeffery's prior or a flat prior for the standard deviation. Hence, propriety of the joint posterior is a crucial issue for full Bayesian inference in particular if based on Markov chain Monte Carlo simulations. We establish theoretical results providing sufficient (and sometimes necessary) conditions for propriety and provide empirical evidence through several accompanying simulation studies
    corecore