323 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    Actuator fault estimation based on a switched LPV extended state observer

    No full text
    article en cours de soumission à une revueActuator fault estimation problem is tackled in this paper. The actuator faults are modeled in the form of multiplicative faults by using effectiveness factors representing the loss of efficiency of the actuators. The main contribution of this paper lies in the capability of dealing with the presented problem by using a switched LPV observer approach. The LTI system in the presence of faulty actuators is rewritten as a switched LPV system by considering the control inputs as scheduling parameters. Then, the actuator faults and the system states are estimated using a switched LPV extended observer. The observer gain is derived, based on the LMIs solution for the switched LPV systems. The presented actuator fault estimation approach is validated by two illustrative examples, the first one about a damper fault estimation of a semi-active suspension system, and the second one concerned to fault estimations on a multiple actuators system

    A survey of literature on controller scheduling

    Get PDF

    LMI-based design of state-feedback controllers for pole clustering of LPV systems in a union of DR-regions

    Get PDF
    This paper introduces an approach for the design of a state-feedback controller that achieves pole clustering in a union of DR-regions for linear parameter varying systems. The design conditions, obtained using a partial pole placement theorem, are eventually expressed in terms of linear matrix inequalities. In addition, it is shown that the approach can be modified in a shifting sense. Hence, the controller gain is computed such that different values of the varying parameters imply different regions of the complex plane where the closed-loop poles are situated. This approach enables the online modification of the closed-loop performance. The effectiveness of the proposed method is demonstrated by means of simulations.acceptedVersio

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    Performance Guarantee of a Class of Continuous LPV System with Restricted-Model-Based Control

    Get PDF
    This paper considers the problem of the robust stabilisation of a class of continuous Linear Parameter Varying (LPV) systems under specifications. In order to guarantee the stabilisation of the plant with very large parameter uncertainties or variations, an output derivative estimation controller is considered. The design of such controller that guarantee desired  induced gain performance is examined. Furthermore, a simple procedure for achieving the  norm performance is proved for any all-poles single-input/single-output second order plant. The proof of stability is based on the polytopic representation of the closed loop under Lyapunov conditions and system transformations. Finally, the effectiveness of the proposed method is verified via a numerical example

    D-stable controller design for Lipschitz NLPV system

    Get PDF
    This paper addresses the design of a state-feedback controller for a class of nonlinear parameter varying (NLPV) systems in which the nonlinearity can be expressed as a parameter-varying Lipschitz term. The controller is designed to satisfy a D-stability specification, which is akin to imposing constraints on the closed-loop pole location in the case of LTI and LPV systems. The design conditions, obtained using a quadratic Lyapunov function, are eventually expressed in terms of linear matrix inequalities (LMIs), which can be solved efficiently using available solvers. The effectiveness of the proposed method is demonstrated by means of a numerical example.Postprint (author's final draft

    Generalized robust gain-scheduled PID controller design for affine LPV systems with polytopic uncertainty

    Get PDF
    In the paper a generalized guaranteed cost output-feedback robust gain-scheduled PID controller synthesis is presented for affine linear parameter-varying systems under polytopic model uncertainty. The controller synthesis is generalized in a sense that it covers robust, robust gain-scheduled, and robust switched (with arbitrary switching algorithm) PID controller design. The proposed centralized/decentralized controller method is based on Bellman–Lyapunov equation, guaranteed cost, and parameter-dependent quadratic stability. The proposed sufficient robust stability and performance conditions are derived in the form of bilinear matrix inequalities (BMI) which can efficiently be solved or further linearized. As the main result, the suggested performance and stability conditions without any restriction on the controller structure are convex functions of the scheduling and uncertainty parameters. Hence, there is no need for applying multi-convexity or other relaxation techniques and consequently the proposed solution delivers a less conservative design method. The viability of the novel design technique is demonstrated and evaluated through numerical examples
    • …
    corecore