1,847 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values

    Full text link
    This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0625

    Big data analytics: a predictive analysis applied to cybersecurity in a financial organization

    Get PDF
    Project Work presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceWith the generalization of the internet access, cyber attacks have registered an alarming growth in frequency and severity of damages, along with the awareness of organizations with heavy investments in cybersecurity, such as in the financial sector. This work is focused on an organization’s financial service that operates on the international markets in the payment systems industry. The objective was to develop a predictive framework solution responsible for threat detection to support the security team to open investigations on intrusive server requests, over the exponentially growing log events collected by the SIEM from the Apache Web Servers for the financial service. A Big Data framework, using Hadoop and Spark, was developed to perform classification tasks over the financial service requests, using Neural Networks, Logistic Regression, SVM, and Random Forests algorithms, while handling the training of the imbalance dataset through BEV. The main conclusions over the analysis conducted, registered the best scoring performances for the Random Forests classifier using all the preprocessed features available. Using the all the available worker nodes with a balanced configuration of the Spark executors, the most performant elapsed times for loading and preprocessing of the data were achieved using the column-oriented ORC with native format, while the row-oriented CSV format performed the best for the training of the classifiers.Com a generalização do acesso à internet, os ciberataques registaram um crescimento alarmante em frequência e severidade de danos causados, a par da consciencialização das organizações, com elevados investimentos em cibersegurança, como no setor financeiro. Este trabalho focou-se no serviço financeiro de uma organização que opera nos mercados internacionais da indústria de sistemas de pagamento. O objetivo consistiu no desenvolvimento uma solução preditiva responsável pela detecção de ameaças, por forma a dar suporte à equipa de segurança na abertura de investigações sobre pedidos intrusivos no servidor, relativamente aos exponencialmente crescentes eventos de log coletados pelo SIEM, referentes aos Apache Web Servers, para o serviço financeiro. Uma solução de Big Data, usando Hadoop e Spark, foi desenvolvida com o objectivo de executar tarefas de classificação sobre os pedidos do serviço financeiros, usando os algoritmos Neural Networks, Logistic Regression, SVM e Random Forests, solucionando os problemas associados ao treino de um dataset desequilibrado através de BEV. As principais conclusões sobre as análises realizadas registaram os melhores resultados de classificação usando o algoritmo Random Forests com todas as variáveis pré-processadas disponíveis. Usando todos os nós do cluster e uma configuração balanceada dos executores do Spark, os melhores tempos para carregar e pré-processar os dados foram obtidos usando o formato colunar ORC nativo, enquanto o formato CSV, orientado a linhas, apresentou os melhores tempos para o treino dos classificadores

    Otimização multi-objetivo em aprendizado de máquina

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Regressão logística multinomial regularizada, classificação multi-rótulo e aprendizado multi-tarefa são exemplos de problemas de aprendizado de máquina em que objetivos conflitantes, como funções de perda e penalidades que promovem regularização, devem ser simultaneamente minimizadas. Portanto, a perspectiva simplista de procurar o modelo de aprendizado com o melhor desempenho deve ser substituída pela proposição e subsequente exploração de múltiplos modelos de aprendizado eficientes, cada um caracterizado por um compromisso (trade-off) distinto entre os objetivos conflitantes. Comitês de máquinas e preferências a posteriori do tomador de decisão podem ser implementadas visando explorar adequadamente este conjunto diverso de modelos de aprendizado eficientes, em busca de melhoria de desempenho. A estrutura conceitual multi-objetivo para aprendizado de máquina é suportada por três etapas: (1) Modelagem multi-objetivo de cada problema de aprendizado, destacando explicitamente os objetivos conflitantes envolvidos; (2) Dada a formulação multi-objetivo do problema de aprendizado, por exemplo, considerando funções de perda e termos de penalização como objetivos conflitantes, soluções eficientes e bem distribuídas ao longo da fronteira de Pareto são obtidas por um solver determinístico e exato denominado NISE (do inglês Non-Inferior Set Estimation); (3) Esses modelos de aprendizado eficientes são então submetidos a um processo de seleção de modelos que opera com preferências a posteriori, ou a filtragem e agregação para a síntese de ensembles. Como o NISE é restrito a problemas de dois objetivos, uma extensão do NISE capaz de lidar com mais de dois objetivos, denominada MONISE (do inglês Many-Objective NISE), também é proposta aqui, sendo uma contribuição adicional que expande a aplicabilidade da estrutura conceitual proposta. Para atestar adequadamente o mérito da nossa abordagem multi-objetivo, foram realizadas investigações mais específicas, restritas à aprendizagem de modelos lineares regularizados: (1) Qual é o mérito relativo da seleção a posteriori de um único modelo de aprendizado, entre os produzidos pela nossa proposta, quando comparado com outras abordagens de modelo único na literatura? (2) O nível de diversidade dos modelos de aprendizado produzidos pela nossa proposta é superior àquele alcançado por abordagens alternativas dedicadas à geração de múltiplos modelos de aprendizado? (3) E quanto à qualidade de predição da filtragem e agregação dos modelos de aprendizado produzidos pela nossa proposta quando aplicados a: (i) classificação multi-classe, (ii) classificação desbalanceada, (iii) classificação multi-rótulo, (iv) aprendizado multi-tarefa, (v) aprendizado com multiplos conjuntos de atributos? A natureza determinística de NISE e MONISE, sua capacidade de lidar adequadamente com a forma da fronteira de Pareto em cada problema de aprendizado, e a garantia de sempre obter modelos de aprendizado eficientes são aqui pleiteados como responsáveis pelos resultados promissores alcançados em todas essas três frentes de investigação específicasAbstract: Regularized multinomial logistic regression, multi-label classification, and multi-task learning are examples of machine learning problems in which conflicting objectives, such as losses and regularization penalties, should be simultaneously minimized. Therefore, the narrow perspective of looking for the learning model with the best performance should be replaced by the proposition and further exploration of multiple efficient learning models, each one characterized by a distinct trade-off among the conflicting objectives. Committee machines and a posteriori preferences of the decision-maker may be implemented to properly explore this diverse set of efficient learning models toward performance improvement. The whole multi-objective framework for machine learning is supported by three stages: (1) The multi-objective modelling of each learning problem, explicitly highlighting the conflicting objectives involved; (2) Given the multi-objective formulation of the learning problem, for instance, considering loss functions and penalty terms as conflicting objective functions, efficient solutions well-distributed along the Pareto front are obtained by a deterministic and exact solver named NISE (Non-Inferior Set Estimation); (3) Those efficient learning models are then subject to a posteriori model selection, or to ensemble filtering and aggregation. Given that NISE is restricted to two objective functions, an extension for many objectives, named MONISE (Many Objective NISE), is also proposed here, being an additional contribution and expanding the applicability of the proposed framework. To properly access the merit of our multi-objective approach, more specific investigations were conducted, restricted to regularized linear learning models: (1) What is the relative merit of the a posteriori selection of a single learning model, among the ones produced by our proposal, when compared with other single-model approaches in the literature? (2) Is the diversity level of the learning models produced by our proposal higher than the diversity level achieved by alternative approaches devoted to generating multiple learning models? (3) What about the prediction quality of ensemble filtering and aggregation of the learning models produced by our proposal on: (i) multi-class classification, (ii) unbalanced classification, (iii) multi-label classification, (iv) multi-task learning, (v) multi-view learning? The deterministic nature of NISE and MONISE, their ability to properly deal with the shape of the Pareto front in each learning problem, and the guarantee of always obtaining efficient learning models are advocated here as being responsible for the promising results achieved in all those three specific investigationsDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/13533-0FAPES

    Large Area Land Cover Mapping Using Deep Neural Networks and Landsat Time-Series Observations

    Get PDF
    This dissertation focuses on analysis and implementation of deep learning methodologies in the field of remote sensing to enhance land cover classification accuracy, which has important applications in many areas of environmental planning and natural resources management. The first manuscript conducted a land cover analysis on 26 Landsat scenes in the United States by considering six classifier variants. An extensive grid search was conducted to optimize classifier parameters using only the spectral components of each pixel. Results showed no gain in using deep networks by using only spectral components over conventional classifiers, possibly due to the small reference sample size and richness of features. The effect of changing training data size, class distribution, or scene heterogeneity were also studied and we found all of them having significant effect on classifier accuracy. The second manuscript reviewed 103 research papers on the application of deep learning methodologies in remote sensing, with emphasis on per-pixel classification of mono-temporal data and utilizing spectral and spatial data dimensions. A meta-analysis quantified deep network architecture improvement over selected convolutional classifiers. The effect of network size, learning methodology, input data dimensionality and training data size were also studied, with deep models providing enhanced performance over conventional one using spectral and spatial data. The analysis found that input dataset was a major limitation and available datasets have already been utilized to their maximum capacity. The third manuscript described the steps to build the full environment for dataset generation based on Landsat time-series data using spectral, spatial, and temporal information available for each pixel. A large dataset containing one sample block from each of 84 ecoregions in the conterminous United States (CONUS) was created and then processed by a hybrid convolutional+recurrent deep network, and the network structure was optimized with thousands of simulations. The developed model achieved an overall accuracy of 98% on the test dataset. Also, the model was evaluated for its overall and per-class performance under different conditions, including individual blocks, individual or combined Landsat sensors, and different sequence lengths. The analysis found that although the deep model performance per each block is superior to other candidates, the per block performance still varies considerably from block to block. This suggests extending the work by model fine-tuning for local areas. The analysis also found that including more time stamps or combining different Landsat sensor observations in the model input significantly enhances the model performance
    corecore