923 research outputs found

    Beyond Simulation: Computer Aided Control System Design Using Equation-Based Object Oriented Modelling for the Next Decade

    Get PDF
    After 20 years since their birth, equation-oriented and object-oriented modelling techniques and tools are now mature, as far as solving simulation problems is concerned. Conversely, there is still much to be done in order to provide more direct support for the design of advanced, model-based control systems, starting from object-oriented plant models. Following a brief review of the current state of the art in this field, the paper presents some proposals for future developments: open model exchange formats, automatic model-order reduction techniques, automatic derivation of simplified transfer functions, automatic derivation of LFT models, automatic generation of inverse models for robotic systems, and support for nonlinear model predictive control

    Hybrid modeling and control of mechatronic systems using a piecewise affine dynamics approach

    Get PDF
    This thesis investigates the topic of modeling and control of PWA systems based on two experimental cases of an electrical and hydraulic nature with varying complexity that were also built, instrumented and evaluated. A full-order model has been created for both systems, including all dominant system dynamics and non-linearities. The unknown parameters and characteristics have been identi ed via an extensive parameter identi cation. In the following, the non-linear characteristics are linearized at several points, resulting in PWA models for each respective setup. Regarding the closed loop control of the generated models and corresponding experimental setups, a linear control structure comprised of integral error, feed-forward and state-feedback control has been used. Additionally, the hydraulic setup has been controlled in an autonomous hybrid position/force control mode, resulting in a switched system with each mode's dynamics being de ned by the previously derived PWA-based model in combination with the control structure and respective mode-dependent controller gains. The autonomous switch between control modes has been de ned by a switching event capable of consistently switching between modes in a deterministic manner despite the noise-a icted measurements. Several methods were used to obtain suitable controller gains, including optimization routines and pole placement. Validation of the system's fast and accurate response was obtained through simulations and experimental evaluation. The controlled system's local stability was proven for regions in state-space associated with operational points by using pole-zero analysis. The stability of the hybrid control approach was proven by using multiple Lyapunov functions for the investigated test scenarios.publishedVersio

    Optimal hardware and control co-design applied to an active car suspension setup

    Get PDF
    For complex systems, it is not easy to obtain optimal designs for the hardware architecture and control configurations. Every design aspect influences the final performance, and often the interactions of the different components cannot be clearly determined in advance. In this work, a novel co-design optimization method was applied that allows the optimal placement and selection of actuators and sensors to be performed simultaneously with the determination of the control architecture and associated controller tuning parameters. This novel co-design method was applied to a state-space model of a downscaled active car suspension laboratory setup. This setup mimics a car driving over a specific road surface while active components in the suspension have to increase the driver’s comfort by counteracting unwanted vibrations. The result of this co-design optimization methodology is a Pareto front that graphically represents the trade-off between the maximum performance and the total implementation cost; the co-design results were validated with measurements of the physical active car suspension setup. The obtained controller tuning parameters are compared herein with existing controller tuning methods to demonstrate that the co-design method is able to determine optimal controller tuning parameters

    Integrated Servo-mechanical Design of High Performance Mechanical Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Co-Simulation in Virtual Verification of Vehicles with Mechatronic Systems

    Get PDF
    In virtual verification of vehicle and mechatronic systems, a mixture of subsystems are integrated numerically in an offline simulation or integrated physically in a hardware-in-loop (HIL) simulation. This heterogeneous engineering approach is crucial for system-level development and widely spreads with\ua0the industrial standard, e.g. Functional Mock-Up Interface (FMI) standard.For the engineers, not only the local subsystem and solver should be known,\ua0but also the global coupled dynamic system and its coupling effect need to be\ua0understood. Both the local and global factors influence the stability, accuracy, numerical efficiency and further on the real-time simulation capability.In this thesis, the explicit parallel co-simulation, which is the most common and closest to the integration with a physical system, is investigated.In the vehicle development, the vehicle and the mechatronic system, e.g. an\ua0Electrcial Power Assisted Steering (EPAS) system can be simulated moreefficiently by a tailored solver and communicative step. The accuracy and\ua0numerical stability problem, which highly depends on the interface dynamics, can be investigated similarly in the linear robust control framework. The\ua0vehicle-mechatronic system should be coupled to give a smaller loop gain for robustness and stability. Physically, it indicates that the splitting part\ua0should be less stiff and the force or torque variable should be applied towardsthe part with a higher impedance in the force-displacement coupling. Furthermore, to compensate the troublesome low-passed and delay effect fromthe coupling, a new coupling method based on H∞ synthesis is developed,\ua0which can improve the accuracy of co-simulation. The method shows robustness to the system dynamics, which makes it more applicable for a complex\ua0vehicle-mechatronic system

    Control techniques for mechatronic assisted surgery

    Get PDF
    The treatment response for traumatic head injured patients can be improved by using an autonomous robotic system to perform basic, time-critical emergency neurosurgery, reducing costs and saving lives. In this thesis, a concept for a neurosurgical robotic system is proposed to perform three specific emergency neurosurgical procedures; they are the placement of an intracranial pressure monitor, external ventricular drainage, and the evacuation of chronic subdural haematoma. The control methods for this system are investigated following a curiosity led approach. Individual problems are interpreted in the widest sense and solutions posed that are general in nature. Three main contributions result from this approach: 1) a clinical evidence based review of surgical robotics and a methodology to assist in their evaluation, 2) a new controller for soft-grasping of objects, and 3) new propositions and theorems for chatter suppression sliding mode controllers. These contributions directly assist in the design of the control system of the neurosurgical robot and, more broadly, impact other areas outside the narrow con nes of the target application. A methodology for applied research in surgical robotics is proposed. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers. However, the lack of conformity to the criteria in the top tier, combined with the inability to conclusively prove increased clinical benefit, particularly symptomatic benefit, is shown to be hampering the potential of surgical robotics in gaining wide establishment. A control scheme for soft-grasping objects is presented. Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used to regulate the contact force and prevent slip. Moreover, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. A fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays). This reduced the controller performance. The problem of chattering and potential solutions are explored. Real systems using sliding mode controllers, such as the control scheme for soft-grasping, have a tendency to chatter at high frequencies. This is caused by the sliding mode controller interacting with un-modelled parasitic dynamics at the actuator-input and sensor-output of the plant. As a result, new chatter-suppression sliding mode controllers have been developed, which introduce new parameters into the system. However, the effect any particular choice of parameters has on system performance is unclear, and this can make tuning the parameters to meet a set of performance criteria di cult. In this thesis, common chatter-suppression sliding mode control strategies are surveyed and simple design and estimation methods are proposed. The estimation methods predict convergence, chattering amplitude, settling time, and maximum output bounds (overshoot) using harmonic linearizations and invariant ellipsoid sets
    • …
    corecore