286 research outputs found

    Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction

    Get PDF
    The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support

    DeepWheat: Estimating Phenotypic Traits from Crop Images with Deep Learning

    Full text link
    In this paper, we investigate estimating emergence and biomass traits from color images and elevation maps of wheat field plots. We employ a state-of-the-art deconvolutional network for segmentation and convolutional architectures, with residual and Inception-like layers, to estimate traits via high dimensional nonlinear regression. Evaluation was performed on two different species of wheat, grown in field plots for an experimental plant breeding study. Our framework achieves satisfactory performance with mean and standard deviation of absolute difference of 1.05 and 1.40 counts for emergence and 1.45 and 2.05 for biomass estimation. Our results for counting wheat plants from field images are better than the accuracy reported for the similar, but arguably less difficult, task of counting leaves from indoor images of rosette plants. Our results for biomass estimation, even with a very small dataset, improve upon all previously proposed approaches in the literature.Comment: WACV 2018 (Code repository: https://github.com/p2irc/deepwheat_WACV-2018

    Corn Plant Disease Classification Based on Leaf using Residual Networks-9 Architecture

    Get PDF
    Classification on corn plants is used to classify leaf of corn plants that are healthy and have diseases consisting of Northern Leaf Blight, Common Rust and Gray Leaf Spot. Convolutional Neural Network (CNN) is one of algorithms from the branch of deep learning that utilizes artificial neural networks to produce accurate results in classifying an image. In this study, ResNet-9 architecture implemented to build the best model CNN for classification corn plant diseases. After that we doing comparisons of epochs have been carried out to obtain the best model, including comparisons of epochs of 5, 25, 55, 75 and 100. After the epoch comparison, the highest accuracy value was obtained in the 100 epoch experiment so that in this study 100 epochs were used in model formation. The number of datasets used is 9145 data which is divided into two, there are training data (80%) and testing data (20%). In this study, three hyperparameter tuning experiments were carried out and the results of hyperparameter tuning experiments where num_workers is 4 and batch_size is 32. This classification obtained an accuracy rate of 99% and the model is implemented into a web interface

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible

    Quantifying soybean phenotypes using UAV imagery and machine learning, deep learning methods

    Get PDF
    Crop breeding programs aim to introduce new cultivars to the world with improved traits to solve the food crisis. Food production should need to be twice of current growth rate to feed the increasing number of people by 2050. Soybean is one the major grain in the world and only US contributes around 35 percent of world soybean production. To increase soybean production, breeders still rely on conventional breeding strategy, which is mainly a 'trial and error' process. These constraints limit the expected progress of the crop breeding program. The goal was to quantify the soybean phenotypes of plant lodging and pubescence color using UAV-based imagery and advanced machine learning. Plant lodging and soybean pubescence color are two of the most important phenotypes for soybean breeding programs. Soybean lodging and pubescence color is conventionally evaluated visually by breeders, which is time-consuming and subjective to human errors. The goal of this study was to investigate the potential of unmanned aerial vehicle (UAV)-based imagery and machine learning in the assessment of lodging conditions and deep learning in the assessment pubescence color of soybean breeding lines. A UAV imaging system equipped with an RGB (red-green-blue) camera was used to collect the imagery data of 1,266 four-row plots in a soybean breeding field at the reproductive stage. Soybean lodging scores and pubescence scores were visually assessed by experienced breeders. Lodging scores were grouped into four classes, i.e., non-lodging, moderate lodging, high lodging, and severe lodging. In contrast, pubescence color scores were grouped into three classes, i.e., gray, tawny, and segregation. UAV images were stitched to build orthomosaics, and soybean plots were segmented using a grid method. Twelve image features were extracted from the collected images to assess the lodging scores of each breeding line. Four models, i.e., extreme gradient boosting (XGBoost), random forest (RF), K-nearest neighbor (KNN), and artificial neural network (ANN), were evaluated to classify soybean lodging classes. Five data pre-processing methods were used to treat the imbalanced dataset to improve the classification accuracy. Results indicate that the pre-processing method SMOTE-ENN consistently performs well for all four (XGBoost, RF, KNN, and ANN) classifiers, achieving the highest overall accuracy (OA), lowest misclassification, higher F1-score, and higher Kappa coefficient. This suggests that Synthetic Minority Over-sampling-Edited Nearest Neighbor (SMOTE-ENN) may be an excellent pre-processing method for using unbalanced datasets and classification tasks. Furthermore, an overall accuracy of 96 percent was obtained using the SMOTE-ENN dataset and ANN classifier. On the other hand, to classify the soybean pubescence color, seven pre-trained deep learning models, i.e., DenseNet121, DenseNet169, DenseNet201, ResNet50, InceptionResNet-V2, Inception-V3, and EfficientNet were used, and images of each plot were fed into the model. Data was enhanced using two rotational and two scaling factors to increase the datasets. Among the seven pre-trained deep learning models, ResNet50 and DenseNet121 classifiers showed a higher overall accuracy of 88 percent, along with higher precision, recall, and F1-score for all three classes of pubescence color. In conclusion, the developed UAV-based high-throughput phenotyping system can gather image features to estimate soybean crucial phenotypes and classify the phenotypes, which will help the breeders in phenotypic variations in breeding trials. Also, the RGB imagery-based classification could be a cost-effective choice for breeders and associated researchers for plant breeding programs in identifying superior genotypes.Includes bibliographical references

    Multivariate Statistical Machine Learning Methods for Genomic Prediction

    Get PDF
    This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool

    Multivariate Statistical Machine Learning Methods for Genomic Prediction

    Get PDF
    This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool
    corecore