13,257 research outputs found

    Diseño para operabilidad: Una revisión de enfoques y estrategias de solución

    Get PDF
    In the last decades the chemical engineering scientific research community has largely addressed the design-foroperability problem. Such an interest responds to the fact that the operability quality of a process is determined by design, becoming evident the convenience of considering operability issues in early design stages rather than later when the impact of modifications is less effective and more expensive. The necessity of integrating design and operability is dictated by the increasing complexity of the processes as result of progressively stringent economic, quality, safety and environmental constraints. Although the design-for-operability problem concerns to practically every technical discipline, it has achieved a particular identity within the chemical engineering field due to the economic magnitude of the involved processes. The work on design and analysis for operability in chemical engineering is really vast and a complete review in terms of papers is beyond the scope of this contribution. Instead, two major approaches will be addressed and those papers that in our belief had the most significance to the development of the field will be described in some detail.En las últimas décadas, la comunidad científica de ingeniería química ha abordado intensamente el problema de diseño-para-operabilidad. Tal interés responde al hecho de que la calidad operativa de un proceso esta determinada por diseño, resultando evidente la conveniencia de considerar aspectos operativos en las etapas tempranas del diseño y no luego, cuando el impacto de las modificaciones es menos efectivo y más costoso. La necesidad de integrar diseño y operabilidad esta dictada por la creciente complejidad de los procesos como resultado de las cada vez mayores restricciones económicas, de calidad de seguridad y medioambientales. Aunque el problema de diseño para operabilidad concierne a prácticamente toda disciplina, ha adquirido una identidad particular dentro de la ingeniería química debido a la magnitud económica de los procesos involucrados. El trabajo sobre diseño y análisis para operabilidad es realmente vasto y una revisión completa en términos de artículos supera los alcances de este trabajo. En su lugar, se discutirán los dos enfoques principales y aquellos artículos que en nuestra opinión han tenido mayor impacto para el desarrollo de la disciplina serán descriptos con cierto detalle.Fil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin

    Optimal operation of combined heat and power systems: an optimization-based control strategy

    Get PDF
    The use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve. Thus, to determine the optimal operation of these systems in dynamic energy-market scenarios, operational constraints and the time-varying price profiles for both electricity and the required resources should be taken into account. In order to maximize the profit during the operation of the CHP plant, this paper proposes an optimization-based controller designed according to the Economic Model Predictive Control (EMPC) approach, which uses a non-constant time step along the prediction horizon to get a shorter step size at the beginning of that horizon while a lower resolution for the far instants. Besides, a softening of related constraints to meet the market requirements related to the sale of electric power to the grid point is proposed. Simulation results show that the computational burden to solve optimization problems in real time is reduced while minimizing operational costs and satisfying the market constraints. The proposed controller is developed based on a real CHP plant installed at the ETA research factory in Darmstadt, Germany.Peer ReviewedPostprint (author's final draft

    Economic model predictive control for optimal operation of combined heat and power systems

    Get PDF
    © 2019. ElsevierThe use of decentralized Combined Heat and Power (CHP) plants is increasing since the high levels of efficiency they can achieve. Hence, to determine the optimal operation of these systems in the changing energy market, the time-varying price profiles for both electricity as well as the required resources and the energy-market constraints should be considered into the design of the control strategies. To solve these issues and maximize the profit during the operation of the CHP plant, this paper proposes an optimization-based controller, which will be designed according to the Economic Model Predictive Control (EMPC) approach. The proposed controller is designed considering a non-constant time step to get a high sampling frequency for the near instants and a lower resolution for the far instants. Besides, a soft constraint to met the market constraints for the sale of electric power is proposed. The proposed controller is developed based on a real CHP plant installed in the ETA research factory in Darmstadt, Germany. Simulation results show that lower computational time can be achieved if a non-constant step time is implemented while the market constraints are satisfied.Peer ReviewedPostprint (author's final draft

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Modeling and control of a plastic film manufacturing web process

    Get PDF
    This paper is concerned with the modelling of aplastic film manufacturing process and the development and implementation of a model-based Cross-Directional (CD) controller. The model is derived from first-principles and some empirical relationships. The final validated nonlinear model could provide a useful off-line platform for developing control and monitoring algorithms.A new controller is designed which has a similar structureto that of Internal Model Control (IMC) with the addition ofan observer whose gain is designed to minimise process andmodel mis-match. The observer gain is obtained by solving amulti-objective optimisation problem through the application of a genetic algorithm. The controller is applied to the nonlinear model and simulation results are presented demonstrating improvements that can be achieved by the proposed controller over two existing CD controllers

    Learning Agent for a Heat-Pump Thermostat With a Set-Back Strategy Using Model-Free Reinforcement Learning

    Full text link
    The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an alternative to a constant set-point strategy, this paper proposes a learning agent for a thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature during convenient moments, e.g. when the occupants are not at home. Finding an optimal set-back strategy requires solving a sequential decision-making process under uncertainty, which presents two challenges. A first challenge is that for most residential buildings a description of the thermal characteristics of the building is unavailable and challenging to obtain. A second challenge is that the relevant information on the state, i.e. the building envelope, cannot be measured by the learning agent. In order to overcome these two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement learning technique. The proposed approach is validated for two building types with different thermal characteristics for heating in the winter and cooling in the summer. The simulation results indicate that the proposed learning agent can reduce the energy consumption by 4-9% during 100 winter days and by 9-11% during 80 summer days compared to the conventional constant set-point strategyComment: Submitted to Energies - MDPI.co

    Evolutionary L∞ identification and model reduction for robust control

    Get PDF
    An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do

    Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology

    Get PDF
    Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules

    A Predictive Model of Nuclear Power Plant Crew Decision-Making and Performance in a Dynamic Simulation Environment

    Get PDF
    The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities
    corecore