515 research outputs found

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Robust fuzzy clustering for multiple instance regression.

    Get PDF
    Multiple instance regression (MIR) operates on a collection of bags, where each bag contains multiple instances sharing an identical real-valued label. Only few instances, called primary instances, contribute to the bag labels. The remaining instances are noise and outliers observations. The goal in MIR is to identify the primary instances within each bag and learn a regression model that can predict the label of a previously unseen bag. In this thesis, we introduce an algorithm that uses robust fuzzy clustering with an appropriate distance to learn multiple linear models from a noisy feature space simultaneously. We show that fuzzy memberships are useful in allowing instances to belong to multiple models, while possibilistic memberships allow identification of the primary instances of each bag with respect to each model. We also use possibilistic memberships to identify and ignore noisy instances and determine the optimal number of regression models. We evaluate our approach on a series of synthetic data sets, remote sensing data to predict the yearly average yield of a crop and application to drug activity prediction. We show that our approach achieves higher accuracy than existing methods

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    Tracking time evolving data streams for short-term traffic forecasting

    Get PDF
    YesData streams have arisen as a relevant topic during the last few years as an efficient method for extracting knowledge from big data. In the robust layered ensemble model (RLEM) proposed in this paper for short-term traffic flow forecasting, incoming traffic flow data of all connected road links are organized in chunks corresponding to an optimal time lag. The RLEM model is composed of two layers. In the first layer, we cluster the chunks by using the Graded Possibilistic c-Means method. The second layer is made up by an ensemble of forecasters, each of them trained for short-term traffic flow forecasting on the chunks belonging to a specific cluster. In the operational phase, as a new chunk of traffic flow data presented as input to the RLEM, its memberships to all clusters are evaluated, and if it is not recognized as an outlier, the outputs of all forecasters are combined in an ensemble, obtaining in this a way a forecasting of traffic flow for a short-term time horizon. The proposed RLEM model is evaluated on a synthetic data set, on a traffic flow data simulator and on two real-world traffic flow data sets. The model gives an accurate forecasting of the traffic flow rates with outlier detection and shows a good adaptation to non-stationary traffic regimes. Given its characteristics of outlier detection, accuracy, and robustness, RLEM can be fruitfully integrated in traffic flow management systems

    Unsupervised tracking of time-evolving data streams and an application to short-term urban traffic flow forecasting

    Get PDF
    I am indebted to many people for their help and support I receive during my Ph.D. study and research at DIBRIS-University of Genoa. First and foremost, I would like to express my sincere thanks to my supervisors Prof.Dr. Masulli, and Prof.Dr. Rovetta for the invaluable guidance, frequent meetings, and discussions, and the encouragement and support on my way of research. I thanks all the members of the DIBRIS for their support and kindness during my 4 years Ph.D. I would like also to acknowledge the contribution of the projects Piattaforma per la mobili\ue0 Urbana con Gestione delle INformazioni da sorgenti eterogenee (PLUG-IN) and COST Action IC1406 High Performance Modelling and Simulation for Big Data Applications (cHiPSet). Last and most importantly, I wish to thanks my family: my wife Shaimaa who stays with me through the joys and pains; my daughter and son whom gives me happiness every-day; and my parents for their constant love and encouragement

    Multimodel Approaches for Plasma Glucose Estimation in Continuous Glucose Monitoring. Development of New Calibration Algorithms

    Full text link
    ABSTRACT Diabetes Mellitus (DM) embraces a group of metabolic diseases which main characteristic is the presence of high glucose levels in blood. It is one of the diseases with major social and health impact, both for its prevalence and also the consequences of the chronic complications that it implies. One of the research lines to improve the quality of life of people with diabetes is of technical focus. It involves several lines of research, including the development and improvement of devices to estimate "online" plasma glucose: continuous glucose monitoring systems (CGMS), both invasive and non-invasive. These devices estimate plasma glucose from sensor measurements from compartments alternative to blood. Current commercially available CGMS are minimally invasive and offer an estimation of plasma glucose from measurements in the interstitial fluid CGMS is a key component of the technical approach to build the artificial pancreas, aiming at closing the loop in combination with an insulin pump. Yet, the accuracy of current CGMS is still poor and it may partly depend on low performance of the implemented Calibration Algorithm (CA). In addition, the sensor-to-patient sensitivity is different between patients and also for the same patient in time. It is clear, then, that the development of new efficient calibration algorithms for CGMS is an interesting and challenging problem. The indirect measurement of plasma glucose through interstitial glucose is a main confounder of CGMS accuracy. Many components take part in the glucose transport dynamics. Indeed, physiology might suggest the existence of different local behaviors in the glucose transport process. For this reason, local modeling techniques may be the best option for the structure of the desired CA. Thus, similar input samples are represented by the same local model. The integration of all of them considering the input regions where they are valid is the final model of the whole data set. Clustering is tBarceló Rico, F. (2012). Multimodel Approaches for Plasma Glucose Estimation in Continuous Glucose Monitoring. Development of New Calibration Algorithms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17173Palanci

    Robustness and Outliers

    Get PDF
    Producción CientíficaUnexpected deviations from assumed models as well as the presence of certain amounts of outlying data are common in most practical statistical applications. This fact could lead to undesirable solutions when applying non-robust statistical techniques. This is often the case in cluster analysis, too. The search for homogeneous groups with large heterogeneity between them can be spoiled due to the lack of robustness of standard clustering methods. For instance, the presence of (even few) outlying observations may result in heterogeneous clusters artificially joined together or in the detection of spurious clusters merely made up of outlying observations. In this chapter we will analyze the effects of different kinds of outlying data in cluster analysis and explore several alternative methodologies designed to avoid or minimize their undesirable effects.Ministerio de Economía, Industria y Competitividad (MTM2014-56235-C2-1-P)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA212U13

    Robust fuzzyclustering for object recognition and classification of relational data

    Get PDF
    Prototype based fuzzy clustering algorithms have unique ability to partition the data while detecting multiple clusters simultaneously. However since real data is often contaminated with noise, the clustering methods need to be made robust to be useful in practice. This dissertation focuses on robust detection of multiple clusters from noisy range images for object recognition. Dave\u27s noise clustering (NC) method has been shown to make prototype-based fuzzy clustering techniques robust. In this work, NC is generalized and the new NC membership is shown to be a product of fuzzy c-means (FCM) membership and robust M-estimator weight (or possibilistic membership). Thus the generalized NC approach is shown to have the partitioning ability of FCM and robustness of M-estimators. Since the NC (or FCM) algorithms are based on fixed-point iteration technique, they suffer from the problem of initializations. To overcome this problem, the sampling based robust LMS algorithm is considered by extending it to fuzzy c-LMS algorithm for detecting multiple clusters. The concept of repeated evidence has been incorporated to increase the speed of the new approach. The main problem with the LMS approach is the need for ordering the distance data. To eliminate this problem, a novel sampling based robust algorithm is proposed following the NC principle, called the NLS method, that directly searches for clusters in the maximum density region of the range data without requiring the specification of number of clusters. The NC concept is also introduced to several fuzzy methods for robust classification of relational data for pattern recognition. This is also extended to non-Euclidean relational data. The resulting algorithms are used for object recognition from range images as well as for identification of bottleneck parts while creating desegregated cells of machine/ components in cellular manufacturing and group technology (GT) applications
    corecore