67 research outputs found

    Expectation Propagation for Rectified Linear Poisson Regression

    Get PDF
    The Poisson likelihood with rectified linear function as non-linearity is a physically plausible model to discribe the stochastic arrival process of photons or other particles at a detector. At low emission rates the discrete nature of this process leads to measurement noise that behaves very differently from additive white Gaussian noise. To address the intractable inference problem for such models, we present a novel efficient and robust Expectation Propagation algorithm entirely based on analytically tractable computations operating re- liably in regimes where quadrature based implementations can fail. Full posterior inference therefore becomes an attractive alternative in areas generally dominated by methods of point estimation. Moreover, we discuss the rectified linear function in the context of other common non-linearities and identify situations where it can serve as a robust alternative

    Accelerating proximal Markov chain Monte Carlo by using an explicit stabilised method

    Get PDF
    We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computation in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approximation that combines several gradient evaluations to significantly accelerate its convergence speed, similarly to accelerated gradient optimisation methods. The proposed methodology is demonstrated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and tomographic reconstruction, with total-variation and 1\ell_1-type priors. Comparisons with Euler-type proximal Monte Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence speeds, achieve larger effective sample sizes, and produce lower mean square estimation errors at equal computational budget.Comment: 28 pages, 13 figures. Accepted for publication in SIAM Journal on Imaging Sciences (SIIMS

    Bayesian image restoration and bacteria detection in optical endomicroscopy

    Get PDF
    Optical microscopy systems can be used to obtain high-resolution microscopic images of tissue cultures and ex vivo tissue samples. This imaging technique can be translated for in vivo, in situ applications by using optical fibres and miniature optics. Fibred optical endomicroscopy (OEM) can enable optical biopsy in organs inaccessible by any other imaging systems, and hence can provide rapid and accurate diagnosis in a short time. The raw data the system produce is difficult to interpret as it is modulated by a fibre bundle pattern, producing what is called the “honeycomb effect”. Moreover, the data is further degraded due to the fibre core cross coupling problem. On the other hand, there is an unmet clinical need for automatic tools that can help the clinicians to detect fluorescently labelled bacteria in distal lung images. The aim of this thesis is to develop advanced image processing algorithms that can address the above mentioned problems. First, we provide a statistical model for the fibre core cross coupling problem and the sparse sampling by imaging fibre bundles (honeycomb artefact), which are formulated here as a restoration problem for the first time in the literature. We then introduce a non-linear interpolation method, based on Gaussian processes regression, in order to recover an interpretable scene from the deconvolved data. Second, we develop two bacteria detection algorithms, each of which provides different characteristics. The first approach considers joint formulation to the sparse coding and anomaly detection problems. The anomalies here are considered as candidate bacteria, which are annotated with the help of a trained clinician. Although this approach provides good detection performance and outperforms existing methods in the literature, the user has to carefully tune some crucial model parameters. Hence, we propose a more adaptive approach, for which a Bayesian framework is adopted. This approach not only outperforms the proposed supervised approach and existing methods in the literature but also provides computation time that competes with optimization-based methods

    Applications of Approximate Learning and Inference for Probabilistic Models

    Get PDF
    We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdetermined system of linear measurements corrupted by noise. Second, we consider the problem of inferring user preferences for items from counts, pairwise comparisons and user activity logs, instances of implicit feedback. Plausible models for images and the noise, incurred when recording them, render posterior inference intractable, while the scale of the inference problem makes sampling based approximations ineffective. Therefore, we develop deterministic approximate inference algorithms for two different augmentations of a typical sparse linear model: first, for the rectified-linear Poisson likelihood, and second, for tree-structured super-Gaussian mixture models. The rectified-linear Poisson likelihood is an alternative noise model, applicable in astronomical and biomedical imaging applications, that operate in intensity regimes in which quantum effects lead to observations that are best described by counts of particles arriving at a sensor, as well as in general Poisson regression problems arising in various fields. In this context we show, that the model-specific computations for Expectation Propagation can be robustly solved by a simple dynamic program. Next, we develop a scalable approximate inference algorithm for structured mixture models, that uses a discrete graphical model to represent dependencies between the latent mixture components of a collection of mixture models. Specifically, we use tree-structured mixtures of super-Gaussians to model the persistence across scales of large coefficients of the Wavelet transform of an image for improved reconstruction. In the second part on models of user preference, we consider two settings: the global static and the contextual dynamic setting. In the global static setting, we represent user-item preferences by a latent low-rank matrix. Instead of using numeric ratings we develop methods to infer this latent representation for two types of implicit feedback: aggregate counts of users interacting with a service and the binary outcomes of pairwise comparisons. We model count data using a latent Gaussian bilinear model with Poisson likelihoods. For this model, we show that the Variational Gaussian approximation can be further relaxed to be available in closed-form by adding additional constraints, leading to an efficient inference algorithm. In the second implicit feedback scenario, we infer the latent preference matrix from pairwise preference statements. We combine a low-rank bilinear model with non-parameteric item- feature regression and develop a novel approximate variational Expectation Maximization algorithm that mitigates the computational challenges due to latent couplings induced by the pairwise comparisons. Finally, in the contextual dynamic setting, we model sequences of user activity at the granularity of single interaction events instead of aggregate counts. Routinely gathered in the background at a large scale in many applications, such sequences can reveal temporal and contextual aspects of user behavior through recurrent patterns. To describe such data, we propose a generic collaborative sequence model based on recurrent neural networks, that combines ideas from collaborative filtering and language modeling

    Filter-Based Probabilistic Markov Random Field Image Priors: Learning, Evaluation, and Image Analysis

    Get PDF
    Markov random fields (MRF) based on linear filter responses are one of the most popular forms for modeling image priors due to their rigorous probabilistic interpretations and versatility in various applications. In this dissertation, we propose an application-independent method to quantitatively evaluate MRF image priors using model samples. To this end, we developed an efficient auxiliary-variable Gibbs samplers for a general class of MRFs with flexible potentials. We found that the popular pairwise and high-order MRF priors capture image statistics quite roughly and exhibit poor generative properties. We further developed new learning strategies and obtained high-order MRFs that well capture the statistics of the inbuilt features, thus being real maximum-entropy models, and other important statistical properties of natural images, outlining the capabilities of MRFs. We suggest a multi-modal extension of MRF potentials which not only allows to train more expressive priors, but also helps to reveal more insights of MRF variants, based on which we are able to train compact, fully-convolutional restricted Boltzmann machines (RBM) that can model visual repetitive textures even better than more complex and deep models. The learned high-order MRFs allow us to develop new methods for various real-world image analysis problems. For denoising of natural images and deconvolution of microscopy images, the MRF priors are employed in a pure generative setting. We propose efficient sampling-based methods to infer Bayesian minimum mean squared error (MMSE) estimates, which substantially outperform maximum a-posteriori (MAP) estimates and can compete with state-of-the-art discriminative methods. For non-rigid registration of live cell nuclei in time-lapse microscopy images, we propose a global optical flow-based method. The statistics of noise in fluorescence microscopy images are studied to derive an adaptive weighting scheme for increasing model robustness. High-order MRFs are also employed to train image filters for extracting important features of cell nuclei and the deformation of nuclei are then estimated in the learned feature spaces. The developed method outperforms previous approaches in terms of both registration accuracy and computational efficiency

    Apprentissage statistique pour la personnalisation de modèles cardiaques à partir de données d’imagerie

    Get PDF
    This thesis focuses on the calibration of an electromechanical model of the heart from patient-specific, image-based data; and on the related task of extracting the cardiac motion from 4D images. Long-term perspectives for personalized computer simulation of the cardiac function include aid to the diagnosis, aid to the planning of therapy and prevention of risks. To this end, we explore tools and possibilities offered by statistical learning. To personalize cardiac mechanics, we introduce an efficient framework coupling machine learning and an original statistical representation of shape & motion based on 3D+t currents. The method relies on a reduced mapping between the space of mechanical parameters and the space of cardiac motion. The second focus of the thesis is on cardiac motion tracking, a key processing step in the calibration pipeline, with an emphasis on quantification of uncertainty. We develop a generic sparse Bayesian model of image registration with three main contributions: an extended image similarity term, the automated tuning of registration parameters and uncertainty quantification. We propose an approximate inference scheme that is tractable on 4D clinical data. Finally, we wish to evaluate the quality of uncertainty estimates returned by the approximate inference scheme. We compare the predictions of the approximate scheme with those of an inference scheme developed on the grounds of reversible jump MCMC. We provide more insight into the theoretical properties of the sparse structured Bayesian model and into the empirical behaviour of both inference schemesCette thèse porte sur un problème de calibration d'un modèle électromécanique de cœur, personnalisé à partir de données d'imagerie médicale 3D+t ; et sur celui - en amont - de suivi du mouvement cardiaque. A cette fin, nous adoptons une méthodologie fondée sur l'apprentissage statistique. Pour la calibration du modèle mécanique, nous introduisons une méthode efficace mêlant apprentissage automatique et une description statistique originale du mouvement cardiaque utilisant la représentation des courants 3D+t. Notre approche repose sur la construction d'un modèle statistique réduit reliant l'espace des paramètres mécaniques à celui du mouvement cardiaque. L'extraction du mouvement à partir d'images médicales avec quantification d'incertitude apparaît essentielle pour cette calibration, et constitue l'objet de la seconde partie de cette thèse. Plus généralement, nous développons un modèle bayésien parcimonieux pour le problème de recalage d'images médicales. Notre contribution est triple et porte sur un modèle étendu de similarité entre images, sur l'ajustement automatique des paramètres du recalage et sur la quantification de l'incertitude. Nous proposons une technique rapide d'inférence gloutonne, applicable à des données cliniques 4D. Enfin, nous nous intéressons de plus près à la qualité des estimations d'incertitude fournies par le modèle. Nous comparons les prédictions du schéma d'inférence gloutonne avec celles données par une procédure d'inférence fidèle au modèle, que nous développons sur la base de techniques MCMC. Nous approfondissons les propriétés théoriques et empiriques du modèle bayésien parcimonieux et des deux schémas d'inférenc

    Approche bayésienne de l'estimation des composantes périodiques des signaux en chronobiologie

    Get PDF
    The toxicity and efficacy of more than 30 anticancer agents presents very high variations, depending on the dosing time. Therefore the biologists studying the circadian rhythm require a very precise method for estimating the Periodic Components (PC) vector of chronobiological signals. Moreover, in recent developments not only the dominant period or the PC vector present a crucial interest, but also their stability or variability. In cancer treatment experiments the recorded signals corresponding to different phases of treatment are short, from seven days for the synchronization segment to two or three days for the after treatment segment. When studying the stability of the dominant period we have to consider very short length signals relative to the prior knowledge of the dominant period, placed in the circadian domain. The classical approaches, based on Fourier Transform (FT) methods are inefficient (i.e. lack of precision) considering the particularities of the data (i.e. the short length). In this thesis we propose a new method for the estimation of the PC vector of biomedical signals, using the biological prior informations and considering a model that accounts for the noise. The experiments developed in the cancer treatment context are recording signals expressing a limited number of periods. This is a prior information that can be translated as the sparsity of the PC vector. The proposed method considers the PC vector estimation as an Inverse Problem (IP) using the general Bayesian inference in order to infer all the unknowns of our model, i.e. the PC vector but also the hyperparameters.La toxicité et l’efficacité de plus de 30 agents anticancéreux présentent de très fortes variations en fonction du temps de dosage. Par conséquent, les biologistes qui étudient le rythme circadien ont besoin d’une méthode très précise pour estimer le vecteur de composantes périodiques (CP) de signaux chronobiologiques. En outre, dans les développements récents, non seulement la période dominante ou le vecteur de CP présentent un intérêt crucial, mais aussi leurs stabilités ou variabilités. Dans les expériences effectuées en traitement du cancer, les signaux enregistrés correspondant à différentes phases de traitement sont courts, de sept jours pour le segment de synchronisation jusqu’à deux ou trois jours pour le segment après traitement. Lorsqu’on étudie la stabilité de la période dominante nous devons considérer des signaux très court par rapport à la connaissance a priori de la période dominante, placée dans le domaine circadien. Les approches classiques fondées sur la transformée de Fourier (TF) sont inefficaces (i.e. manque de précision) compte tenu de la particularité des données (i.e. la courte longueur). Dans cette thèse, nous proposons une nouvelle méthode pour l’estimation du vecteur de CP des signaux biomédicaux, en utilisant les informations biologiques a priori et en considérant un modèle qui représente le bruit. Les signaux enregistrés dans le cadre d’expériences développées pour le traitement du cancer ont un nombre limité de périodes. Cette information a priori peut être traduite comme la parcimonie du vecteur de CP. La méthode proposée considère l’estimation de vecteur de CP comme un problème inverse enutilisant l’inférence bayésienne générale afin de déduire toutes les inconnues de notre modèle, à savoir le vecteur de CP mais aussi les hyperparamètres (i.e. les variances associées)
    corecore