9,616 research outputs found

    Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost

    Full text link
    Poyiadjis et al. (2011) show how particle methods can be used to estimate both the score and the observed information matrix for state space models. These methods either suffer from a computational cost that is quadratic in the number of particles, or produce estimates whose variance increases quadratically with the amount of data. This paper introduces an alternative approach for estimating these terms at a computational cost that is linear in the number of particles. The method is derived using a combination of kernel density estimation, to avoid the particle degeneracy that causes the quadratically increasing variance, and Rao-Blackwellisation. Crucially, we show the method is robust to the choice of bandwidth within the kernel density estimation, as it has good asymptotic properties regardless of this choice. Our estimates of the score and observed information matrix can be used within both online and batch procedures for estimating parameters for state space models. Empirical results show improved parameter estimates compared to existing methods at a significantly reduced computational cost. Supplementary materials including code are available.Comment: Accepted to Journal of Computational and Graphical Statistic

    Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    Get PDF
    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values depending on the mode of traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. Mode switching occurs according to a first-order Markov chain. This study proposes an expectation-maximization (EM) technique for estimating the transition matrix of this Markovian mode process and the parameters of the AR models for each mode. The technique is applied to actual traffic flow data from the city of Jakarta, Indonesia. The model thus obtained is validated by using the smoothed inference algorithms and an online particle filter. The authors also develop an EM parameter estimation that, in combination with a time-window shift technique, can be useful and practical for periodically updating the parameters of hybrid model leading to an adaptive traffic flow state estimator

    Convergence of a Particle-based Approximation of the Block Online Expectation Maximization Algorithm

    Full text link
    Online variants of the Expectation Maximization (EM) algorithm have recently been proposed to perform parameter inference with large data sets or data streams, in independent latent models and in hidden Markov models. Nevertheless, the convergence properties of these algorithms remain an open problem at least in the hidden Markov case. This contribution deals with a new online EM algorithm which updates the parameter at some deterministic times. Some convergence results have been derived even in general latent models such as hidden Markov models. These properties rely on the assumption that some intermediate quantities are available in closed form or can be approximated by Monte Carlo methods when the Monte Carlo error vanishes rapidly enough. In this paper, we propose an algorithm which approximates these quantities using Sequential Monte Carlo methods. The convergence of this algorithm and of an averaged version is established and their performance is illustrated through Monte Carlo experiments

    Sequential Bayesian inference for static parameters in dynamic state space models

    Full text link
    A method for sequential Bayesian inference of the static parameters of a dynamic state space model is proposed. The method is based on the observation that many dynamic state space models have a relatively small number of static parameters (or hyper-parameters), so that in principle the posterior can be computed and stored on a discrete grid of practical size which can be tracked dynamically. Further to this, this approach is able to use any existing methodology which computes the filtering and prediction distributions of the state process. Kalman filter and its extensions to non-linear/non-Gaussian situations have been used in this paper. This is illustrated using several applications: linear Gaussian model, Binomial model, stochastic volatility model and the extremely non-linear univariate non-stationary growth model. Performance has been compared to both existing on-line method and off-line methods
    • …
    corecore