4,054 research outputs found

    Highly computationally efficient state filter based on the delta operator

    Get PDF
    The Kalman filter is not suitable for the state estimation of linear systems with multistate delays, and the extended state vector Kalman filtering algorithm results in heavy computational burden because of the large dimension of the state estimation covariance matrix. Thus, in this paper, we develop a novel state estimation algorithm for enhancing the computational efficiency based on the delta operator. The computation analysis and the simulation example show the performance of the proposed algorithm

    Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

    Get PDF
    This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms

    Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems

    Get PDF
    This paper investigates parameter estimation problems for multivariable controlled autoregressive autoregressive moving average (M-CARARMA) systems. In order to improve the performance of the standard multivariable generalized extended stochastic gradient (M-GESG) algorithm, we derive a partially coupled generalized extended stochastic gradient algorithm by using the auxiliary model. In particular, we divide the identification model into several subsystems based on the hierarchical identification principle and estimate the parameters using the coupled relationship between these subsystems. The simulation results show that the new algorithm can give more accurate parameter estimates of the M-CARARMA system than the M-GESG algorithm

    Gradient-based iterative parameter estimation for bilinear-in-parameter systems using the model decomposition technique

    Get PDF
    The parameter estimation issues of a block-oriented non-linear system that is bilinear in the parameters are studied, i.e. the bilinear-in-parameter system. Using the model decomposition technique, the bilinear-in-parameter model is decomposed into two fictitious submodels: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear dynamic one and the noise model. Then a gradient-based iterative algorithm is proposed to estimate all the unknown parameters by formulating and minimising two criterion functions. The stochastic gradient algorithms are provided for comparison. The simulation results indicate that the proposed iterative algorithm can give higher parameter estimation accuracy than the stochastic gradient algorithms

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Identification of the nonlinear systems based on the kernel functions

    Get PDF
    Constructing an appropriate membership function is significant in fuzzy logic control. Based on the multi-model control theory, this article constructs a novel kernel function which can implement the fuzzification and defuzzification processes and reflect the dynamic quality of the nonlinear systems accurately. Then we focus on the identification problems of the nonlinear systems based on the kernel functions. Applying the hierarchical identification principle, we present the hierarchical stochastic gradient algorithm for the nonlinear systems. Meanwhile, the one-dimensional search methods are proposed to solve the problem of determining the optimal step sizes. In order to improve the parameter estimation accuracy, we propose the hierarchical multi-innovation forgetting factor stochastic gradient algorithm by introducing the forgetting factor and using the multi-innovation identification theory. The simulation example is provided to test the proposed algorithms from the aspects of parameter estimation accuracy and prediction performance

    Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation

    Get PDF
    This paper considers the parameter identification problems of the input nonlinear output-error (IN-OE) systems, that is the Hammerstein output-error systems. In order to overcome the excessive calculation amount of the over-parameterization method of the IN-OE systems. Through applying the hierarchial identification principle and decomposing the IN-OE system into three subsystems with a smaller number of parameters, we present the key term separation auxiliary model hierarchical gradient-based iterative algorithm and the key term separation auxiliary model hierarchical least squares-based iterative algorithm, which are called the key term separation auxiliary model three-stage gradient-based iterative algorithm and the key term separation auxiliary model three-stage least squares-based iterative algorithm. The comparison of the calculation amount and the simulation analysis indicate that the proposed algorithms are effective. (c) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved

    State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors

    Get PDF
    This paper considers the state estimation problem of bilinear systems in the presence of disturbances. The standard Kalman filter is recognized as the best state estimator for linear systems, but it is not applicable for bilinear systems. It is well known that the extended Kalman filter (EKF) is proposed based on the Taylor expansion to linearize the nonlinear model. In this paper, we show that the EKF method is not suitable for bilinear systems because the linearization method for bilinear systems cannot describe the behavior of the considered system. Therefore, this paper proposes a state filtering method for the single-input–single-output bilinear systems by minimizing the covariance matrix of the state estimation errors. Moreover, the state estimation algorithm is extended to multiple-input–multiple-output bilinear systems. The performance analysis indicates that the state estimates can track the true states. Finally, the numerical examples illustrate the specific performance of the proposed method

    Partially coupled gradient estimation algorithm for multivariable equation-error autoregressive moving average systems using the data filtering technique

    Get PDF
    System identification provides many convenient and useful methods for engineering modelling. This study targets the parameter identification problems for multivariable equation-error autoregressive moving average systems. To reduce the influence of the coloured noises on the parameter estimation, the data filtering technique is adopted to filter the input and output data, and to transform the original system into a filtered system with white noises. Then the filtered system is decomposed into several subsystems and a filtering-based partially-coupled generalised extended stochastic gradient algorithm is developed via the coupling concept. In contrast to the multivariable generalised extended stochastic gradient algorithm, the proposed algorithm can give more accurate parameter estimates. Finally, the effectiveness of the proposed algorithm is well demonstrated by simulation examples

    State filtering and parameter estimation for two input two output systems with time delay

    Get PDF
    This paper focuses on presenting a new identification algorithm to estimate the parameters and state variables for two-input two-output dynamic systems with time delay based on canonical state space models. First, the related input-output equation is determined and transformed into an identification oriented model, which does not involve in the unmeasurable states, and then a residual based least squares identification algorithm is presented for the estimations. After the parameters being estimated, the system states are subsequently estimated by using the estimated parameters. Through theoretical analysis, the convergence of the algorithm is derived to provide assurance for applicability. Finally, a selected simulation example is given for a meaningful case study to show the effectiveness of the proposed algorithm
    • …
    corecore