71 research outputs found

    Modelling Execution Tracing Quality by Means of Type-1 Fuzzy Logic

    Get PDF
    CCIExecution tracing quality is a crucial characteristic which contributes to the overall software product quality though the present quality frameworks neglect this property. In the scope of this pilot study the authors introduce a process to create a model for describing execution tracing as a quality property; moreover, the performance of four different models created is compared. The process and the models presented are capable of capturing subjective uncertainty which is an intrinsic part of the quality measurement process. In addition, the possibility of linking the presented models to software product quality frameworks is also illustrated

    Heuristic design of fuzzy inference systems: a review of three decades of research

    Get PDF
    This paper provides an in-depth review of the optimal design of type-1 and type-2 fuzzy inference systems (FIS) using five well known computational frameworks: genetic-fuzzy systems (GFS), neuro-fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving fuzzy systems (EFS), and multi-objective fuzzy systems (MFS), which is in view that some of them are linked to each other. The heuristic design of GFS uses evolutionary algorithms for optimizing both Mamdani-type and Takagi–Sugeno–Kang-type fuzzy systems. Whereas, the NFS combines the FIS with neural network learning systems to improve the approximation ability. An HFS combines two or more low-dimensional fuzzy logic units in a hierarchical design to overcome the curse of dimensionality. An EFS solves the data streaming issues by evolving the system incrementally, and an MFS solves the multi-objective trade-offs like the simultaneous maximization of both interpretability and accuracy. This paper offers a synthesis of these dimensions and explores their potentials, challenges, and opportunities in FIS research. This review also examines the complex relations among these dimensions and the possibilities of combining one or more computational frameworks adding another dimension: deep fuzzy systems

    Transition Between TS Fuzzy Models and the Associated Convex Hulls by TS Fuzzy Model Transformation

    Get PDF
    One of the primary objectives underlying the extensive 20-year development of the TS Fuzzy model transformation (originally known as TP model transformation) is to establish a framework capable of generating alternative Fuzzy rules for a given TS Fuzzy model, thereby manipulating the associated convex hull to enhance further design outcomes. The existing methods integrated into the TS Fuzzy model transformation offer limited capabilities in deriving only a few types of loose and tight convex hulls. In this article, we propose a radically new approach that enables the derivation of an infinite number of alternative Fuzzy rules and, hence, convex hulls in a systematic and tractable manner. The article encompasses the following key novelties. Firstly, we develop a Fuzzy rule interpolation method, based on the pseudo TS Fuzzy model transformation and the antecedent Fuzzy set rescheduling technique, that leads to a smooth transition between the Fuzzy rules and the corresponding convex hulls. Then, we extend the proposed concept with the antecedent Fuzzy set refinement and reinforcement technique to tackle large-scale problems characterized by a high number of inputs and Fuzzy rules. The paper also includes demonstrative examples to illustrate the theoretical key steps, and concludes with an examination of a real complex engineering problem to showcase the effectiveness and straightforward execution of the proposed convex hull manipulation approach

    Inherent Fuzzy Entropy for the Improvement of EEG Complexity Evaluation

    Full text link
    © 2017 IEEE. In recent years, the concept of entropy has been widely used to measure the dynamic complexity of signals. Since the state of complexity of human beings is significantly affected by their health state, developing accurate complexity evaluation algorithms is a crucial and urgent area of study. This paper proposes using inherent fuzzy entropy (Inherent FuzzyEn) and its multiscale version, which employs empirical mode decomposition and fuzzy membership function (exponential function) to address the dynamic complexity in electroencephalogram (EEG) data. In the literature, the reliability of entropy-based complexity evaluations has been limited by superimposed trends in signals and a lack of multiple time scales. Our proposed method represents the first attempt to use the Inherent FuzzyEn algorithm to increase the reliability of complexity evaluation in realistic EEG applications. We recorded the EEG signals of several subjects under resting condition, and the EEG complexity was evaluated using approximate entropy, sample entropy, FuzzyEn, and Inherent FuzzyEn, respectively. The results indicate that Inherent FuzzyEn is superior to other competing models regardless of the use of fuzzy or nonfuzzy structures, and has the most stable complexity and smallest root mean square deviation

    Vehicle level health assessment through integrated operational scalable prognostic reasoners

    Get PDF
    Today’s aircraft are very complex in design and need constant monitoring of the systems to establish the overall health status. Integrated Vehicle Health Management (IVHM) is a major component in a new future asset management paradigm where a conscious effort is made to shift asset maintenance from a scheduled based approach to a more proactive and predictive approach. Its goal is to maximize asset operational availability while minimising downtime and the logistics footprint through monitoring deterioration of component conditions. IVHM involves data processing which comprehensively consists of capturing data related to assets, monitoring parameters, assessing current or future health conditions through prognostics and diagnostics engine and providing recommended maintenance actions. The data driven prognostics methods usually use a large amount of data to learn the degradation pattern (nominal model) and predict the future health. Usually the data which is run-to-failure used are accelerated data produced in lab environments, which is hardly the case in real life. Therefore, the nominal model is far from the present condition of the vehicle, hence the predictions will not be very accurate. The prediction model will try to follow the nominal models which mean more errors in the prediction, this is a major drawback of the data driven techniques. This research primarily presents the two novel techniques of adaptive data driven prognostics to capture the vehicle operational scalability degradation. Secondary the degradation information has been used as a Health index and in the Vehicle Level Reasoning System (VLRS). Novel VLRS are also presented in this research study. The research described here proposes a condition adaptive prognostics reasoning along with VLRS
    • …
    corecore