97 research outputs found

    DECODING OF MULTIPOINT ALGEBRAIC GEOMETRY CODES VIA LISTS

    Get PDF
    Algebraic geometry codes have been studied greatly since their introduction by Goppa . Early study had focused on algebraic geometry codes CL(D;G) where G was taken to be a multiple of a single point. However, it has been shown that if we allow G to be supported by more points, then the associated code may have better parameters. We call such a code a multipoint code and if G is supported by m points, then we call it an m-point code. In this dissertation, we wish to develop a decoding algorithm for multipoint codes. We show how we can embed a multipoint algebraic geometry code into a one-point supercode so that we can perform list decoding in the supercode. From the output list, we determine which of the elements is a codeword in the multipoint code. In this way we have unique decoding up to the minimum distance for multipoint algebraic geometry codes, provided the parameters of the list decoding algorithm are set appropriately

    List Decoding of Algebraic Codes

    Get PDF

    Approximate common divisors via lattices

    Get PDF
    We analyze the multivariate generalization of Howgrave-Graham's algorithm for the approximate common divisor problem. In the m-variable case with modulus N and approximate common divisor of size N^beta, this improves the size of the error tolerated from N^(beta^2) to N^(beta^((m+1)/m)), under a commonly used heuristic assumption. This gives a more detailed analysis of the hardness assumption underlying the recent fully homomorphic cryptosystem of van Dijk, Gentry, Halevi, and Vaikuntanathan. While these results do not challenge the suggested parameters, a 2^(n^epsilon) approximation algorithm with epsilon<2/3 for lattice basis reduction in n dimensions could be used to break these parameters. We have implemented our algorithm, and it performs better in practice than the theoretical analysis suggests. Our results fit into a broader context of analogies between cryptanalysis and coding theory. The multivariate approximate common divisor problem is the number-theoretic analogue of multivariate polynomial reconstruction, and we develop a corresponding lattice-based algorithm for the latter problem. In particular, it specializes to a lattice-based list decoding algorithm for Parvaresh-Vardy and Guruswami-Rudra codes, which are multivariate extensions of Reed-Solomon codes. This yields a new proof of the list decoding radii for these codes.Comment: 17 page

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2log⁥n)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlog⁥n)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of Ύm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant Ύ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)log⁥n)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009

    Faster Algorithms for Multivariate Interpolation with Multiplicities and Simultaneous Polynomial Approximations

    Get PDF
    The interpolation step in the Guruswami-Sudan algorithm is a bivariate interpolation problem with multiplicities commonly solved in the literature using either structured linear algebra or basis reduction of polynomial lattices. This problem has been extended to three or more variables; for this generalization, all fast algorithms proposed so far rely on the lattice approach. In this paper, we reduce this multivariate interpolation problem to a problem of simultaneous polynomial approximations, which we solve using fast structured linear algebra. This improves the best known complexity bounds for the interpolation step of the list-decoding of Reed-Solomon codes, Parvaresh-Vardy codes, and folded Reed-Solomon codes. In particular, for Reed-Solomon list-decoding with re-encoding, our approach has complexity O ~(ℓω−1m2(n−k))\mathcal{O}\tilde{~}(\ell^{\omega-1}m^2(n-k)), where ℓ,m,n,k\ell,m,n,k are the list size, the multiplicity, the number of sample points and the dimension of the code, and ω\omega is the exponent of linear algebra; this accelerates the previously fastest known algorithm by a factor of ℓ/m\ell / m.Comment: Version 2: Generalized our results about Problem 1 to distinct multiplicities. Added Section 4 which details several applications of our results to the decoding of Reed-Solomon codes (list-decoding with re-encoding technique, Wu algorithm, and soft-decoding). Reorganized the sections, added references and corrected typo

    Cryptanalyzing the Polynomial-Reconstruction based Public-Key System Under Optimal Parameter Choice

    Get PDF
    Recently, Augot and Finiasz presented a coding theoretic public key cryptosystem that suggests a new approach for designing such systems based on the Polynomial Reconstruction Problem. Their cryptosystem is an instantiation of this approach under a specific choice of parameters which, given the state of the art of coding theory, we show in this work to be sub-optimal. Coron showed how to attack the Augot and Finiasz cryptosystem. A question left open is whether the general approach suggested by the cryptosystem works or not. In this work, we show that the general approach (rather than only the instantiation) is broken as well. Our attack employs the recent powerful list-decoding mechanisms
    • 

    corecore