1,074 research outputs found

    Computational Modeling, Formal Analysis, and Tools for Systems Biology.

    Get PDF
    As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science

    ANALYSIS OF BIOPATHWAY MODELS USING PARALLEL ARCHITECTURES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Review of flexible energy harvesting for bioengineering in alignment with SDG

    Get PDF
    To cater to the extensive body movements and deformations necessitated by biomedical equipment flexible piezoelectrics emerge as a promising solution for energy harvesting. This review research delves into the potential of Flexible Piezoelectric Materials (FPM) as a sustainable solution for clean and affordable energy, aligning with the United Nations' Sustainable Development Goals (SDGs). By systematically examining the secondary functions of stretchability, hybrid energy harvesting, and self-healing, the study aims to comprehensively understand these materials' mechanisms, strategies, and relationships between structural characteristics and properties. The research highlights the significance of designing piezoelectric materials that can conform to the curvilinear shape of the human body, enabling sustainable and efficient mechanical energy capture for various applications, such as biosensors and actuators. The study identifies critical areas for future investigation, including the commercialization of stretchable piezoelectric systems, prevention of unintended interference in hybrid energy harvesters, development of consistent wearability metrics, and enhancement of the elastic piezoelectric material, electrode circuit, and substrate for improved stretchability and comfort. In conclusion, this review research offers valuable insights into developing and implementing FPM as a promising and innovative approach to harnessing clean, affordable energy in line with the SDGs.</p

    Abstraction-Based Parameter Synthesis for Multiaffine Systems

    Get PDF
    International audienceMultiaffine hybrid automata (MHA) represent a powerful formalism to model complex dynamical systems. This formalism is particularly suited for the representation of biological systems which often exhibit highly non-linear behavior. In this paper, we consider the problem of parameter identification for MHA. We present an abstraction of MHA based on linear hybrid automata, which can be analyzed by the SpaceEx model checker. This abstraction enables a precise handling of time-dependent properties. We demonstrate the potential of our approach on a model of a genetic regulatory network and a myocyte model

    Mechanochemical Control of Stem Cell Biology in Development and Disease: Experimental and Theoretical Models

    Get PDF
    Whether a stem cell remains or egresses away from its physiological niche is a function of mechanical and soluble factors in a time-dependent manner, which implicates a `memory\u27 of prior mechanochemical conditioning. Virtually every organ in the body contains resident stem or progenitor cells that contribute to organ homeostasis or repair. The wound healing process in higher vertebrate animals is spatiotemporally complex and usually leads to scarring. Limitations for the use of stem cells as regenerative therapy include the lack of expansion capabilities in vitro as well as materials issues that complicate traditional biochemical protocols. A minimal `scar in a dish\u27 model is developed to clarify the kinetics of tension-sensitive proteins in mesenchymal stem cells (MSCs), which possess plasticity to mechanochemical changes of the microenvironment that are typical of scars. The organization and expression of such proteins implicates transcription factors that ultimately steer cell fate. In contrast to classic mechano-transducers of matrix mechanics such as actin assembly-dependent serum response factor (SRF) signaling, a novel mechano-repressive role of NKX2.5 is implicated in maintaining intracellular tension in long-term stem cell cultures on stiff matrices via nucleo-cytoplasmic shuttling — ultimately setting up a \u27mechanical memory\u27. Core gene circuits with known roles in stem cell mechanobiology are modeled based on the \u27use it or lose it\u27 concept: tension inhibits turnover of structural proteins such as extracellular collagens, cytoskeletal myosins and nucleoskeletal lamins. This theoretical approach is tested in a variety of processes in vitro and in vivo that involve forces including cardiac development, osteogenic commitment of MSCs, and fibrosis therapy. With the sophistication of the science and technology of biomaterials relevant to stem cell biology and medicine, matrix mechanics can thus be rigorously combined with biochemical instructions in order to maximize therapeutic utility of stem cells

    Partial differential equations for self-organization in cellular and developmental biology

    Get PDF
    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field
    corecore