100 research outputs found

    Parameter Stability Region Analysis of Islanded Microgrid Based on Bifurcation Theory

    Get PDF

    Stability Boundary Analysis of Islanded Droop-Based Microgrids Using an Autonomous Shooting Method

    Get PDF
    This paper presents a stability analysis for droop-based islanded AC microgrids via an autonomous shooting method based on bifurcation theory. Shooting methods have been used for the periodic steady-state analysis of electrical systems with harmonic or unbalanced components with a fixed fundamental frequency; however, these methods cannot be directly used for the analysis of microgrids because, due to the their nature, the microgrids frequency has small variations depending on their operative point. In this way, a new system transformation is introduced in this work to change the droop-controlled microgrid mathematical model from an non-autonomous system into an autonomous system. By removing the explicit time dependency, the steady-state solution can be obtained with a shooting methods and the stability of the system calculated. Three case studies are presented, where unbalances and nonlinearities are included, for stability analysis based on bifurcation analysis; the bifurcations indicate qualitative changes in the dynamics of the system, thus delimiting the operating zones of nonlinear systems, which is important for practical designs. The model transformation is validated through time-domain simulation comparisons, and it is demonstrated through the bifurcation analysis that the instability of the microgrid is caused by supercritical Neimark–Sacker bifurcations, and the dynamical system phase portraits are presented

    Voltage stability of power systems with renewable-energy inverter-based generators: A review

    Get PDF
    © 2021 by the authors. The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids

    Static Voltage Stability Analysis for Islanded Microgrids

    Full text link
    The ongoing development of renewable energy and microgrid technologies has gradually transformed the conventional energy infrastructure into a modernized system with more distributed generation and localized energy storage options. Compared with power grids utilizing synchronous generation, inverter-based networks cannot physically provide large amounts of inertia. Therefore, more advanced, and extensive studies regarding stability considerations are required for such systems. Appropriate analytical methods are needed for the voltage stability analysis of renewable-dominated power systems, which incorporate many inverters and distributed energy sources. Microgrid voltage stability is being challenged as the power output of renewable energy generation is not as stable as the traditional generation used in the main grid. Therefore, the choice of voltage stability analysis techniques plays an important role in the stable operation of the microgrid. This thesis comprehensively studies static voltage stability analyses of islanded microgrids with high levels of renewable energy penetration. Firstly, a series of generalized evaluation schemes and improvement methods relating to the voltage stability of power systems integrated with various distributed energy resources are discussed. This study presents guidelines for voltage stability analysis and instability mitigation methods for modern renewable-rich power systems. Then, four dominant VSI techniques for microgrids are studied and compared in this paper. An islanded microgrid system is modelled based on the IEEE-14-bus system in PSCAD. The model evaluates the stability results analyzed by different voltage stability indices (VSIs). Four simulation scenarios are applied in this thesis, including changing the output power of distributed generations (DGs) and the connection position of the DGs. The advantages and disadvantages of each technique are discussed based on the simulation results. A ranking of bus voltage stability is obtained based on the simulation and the VSI calculation. Finally, a novel static voltage stability analysis technique is proposed

    Voltage Stability of Power Systems with Renewable-Energy Inverter-Based Generators: A Review

    Get PDF
    The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids

    New Analysis and Operational Control Algorithms for Islanded Microgrid Systems

    Get PDF
    Driven by technical, economic and environmental benefits for different stakeholders in the power industry, the electric distribution system is currently undergoing a major paradigm shift towards having an increasing portion of its growing demand supplied via distributed generation (DG) units. As the number of DG units increase; microgrids can be defined within the electric distribution system as electric regions with enough generation to meet all or most of its local demand. A microgrid should be able to operate in two modes, grid-connected or islanded. The IEEE standard 1547.4 enumerates a list of potential benefits for the islanded microgrid operation. Such benefits include: 1) improving customers’ reliability, 2) relieving electric power system overload problems, 3) resolving power quality issues, and 4) allowing for maintenance of the different power system components without interrupting customers. These benefits motivate the operation of microgrid systems in the islanded mode. However the microgrid isolation from the main grid creates special technical challenges that have to be comprehensively investigated in order to facilitate a successful implementation of the islanded microgrid concept. Motivated by these facts, the target of this thesis is to introduce new analysis and operational control algorithms to tackle some of the challenges associated with the practical implementation of the islanded microgrid concept. In order to accomplish this target, this study is divided into four perspectives: 1) developing an accurate steady-state analysis algorithm for islanded microgrid systems, 2) maximizing the possible utilization of islanded microgrid limited generation resources, 3) allowing for the decentralized operation of islanded microgrid systems and 4) enabling the islanded microgrid operation in distribution systems with high penetration of plug-in electric vehicles (PEVs). First for the steady-state analysis of islanded microgrid systems, a novel and generalized algorithm is proposed to provide accurate power flow analysis of islanded microgrid systems. Conventional power flow tools found in the literature are generally not suitable for the islanded microgrid operating mode. The reason is that none of these tools reflect the islanded microgrid special philosophy of operation in the absence of the utility bus. The proposed algorithm adopts the real characteristics of the islanded microgrid operation; i.e., 1) Some of the DG units are controlled using droop control methods and their generated active and reactive power are dependent on the power flow variables and cannot be pre-specified; 2) The steady-state system frequency is not constant and is considered as one of the power flow variables. The proposed algorithm is generic, where the features of distribution systems i.e. three-phase feeder models, unbalanced loads and load models have been taken in consideration. The effectiveness of the proposed algorithm, in providing accurate steady-state analysis of islanded microgrid systems, is demonstrated through several case studies. Secondly, this thesis proposes the consideration of a system maximum loadability criterion in the optimal power flow (OPF) problem of islanded microgrid systems. Such consideration allows for an increased utilization of the islanded microgrid limited generation resources when in isolation from the utility grid. Three OPF problem formulations for islanded microgrids are proposed; 1) The OPF problem for maximum loadability assessment, 2) The OPF for maximizing the system loadability, and 3) The bi-objective OPF problem for loadability maximization and generation cost minimization. An algorithm to achieve a best compromise solution between system maximum loadability and minimum generation costs is also proposed. A detailed islanded microgrid model is adopted to reflect the islanded microgrid special features and real operational characteristics in the proposed OPF problem formulations. The importance and consequences of considering the system maximum loadability in the operational planning of islanded microgrid systems are demonstrated through comparative numerical studies. Next, a new probabilistic algorithm for enabling the decentralized operation of islanded microgrids, including renewable resources, in the absence of a microgrid central controller (MGCC) is proposed. The proposed algorithm adopts a constraint hierarchy approach to enhance the operation of islanded microgrids by satisfying the system’s operational constraints and expanding its loading margin. The new algorithm takes into consideration the variety of possible islanded microgrid configurations that can be initiated in a distribution network (multi-microgrids), the uncertainty and variability associated with the output power of renewable DG units as well as the variability of the load, and the special operational philosophy associated with islanded microgrid systems. Simulation studies show that the proposed algorithm can facilitate the successful implementation of the islanded microgrid concept by reducing customer interruptions and enhancing the islanded microgrid loadability margins. Finally, this research proposes a new multi-stage control scheme to enable the islanded microgrid operation in the presence of high PEVs penetration. The proposed control scheme optimally coordinates the DG units operation, the shedding of islanded microgrid power demand (during inadequate generation periods) and the PEVs charging/discharging decisions. To this end, a three-stage control scheme is formulated in order to: 1) minimize the load shedding, 2) satisfy the PEVs customers’ requirements and 3) minimize the microgrid cost of operation. The proposed control scheme takes into consideration; the variability associated with the output power of renewable DG units, the random behaviour of PEV charging and the special features of islanded microgrid systems. The simulation studies show that the proposed control scheme can enhance the operation of islanded microgrid systems in the presence of high PEVs penetration and facilitate a successful implementation of the islanded microgrid concept, under the smart grid paradigm

    DC & Hybrid Micro-Grids

    Get PDF
    This book is a printed version of the papers published in the Special Issue “DC & Hybrid Microgrids” of Applied Sciences. This Special Issue, co-organized by the University of Pisa, Italy and Østfold University College in Norway, has collected nine papers and the editorial, from 28 submitted, with authors from Asia, North America and Europe. The published articles provide an overview of the most recent research advances in direct current (DC) and hybrid microgrids, exploiting the opportunities offered by the use of renewable energy sources, battery energy storage systems, power converters, innovative control and energy management strategies

    Toward the Integration of DC Microgrids into a Hybrid AC/DC Paradigm

    Get PDF
    The recent penetration of distributed generation (DG) into existing electricity grids and the consequent development of active distribution networks (ADNs) have prompted an exploration of power distribution in a dc microgrid paradigm. Although dc power distribution has been implemented in aircraft, ships, and communication centres, the technology is still at an early stage and must be investigated with respect to technical feasibility when applied to distribution systems. In particular, the operation of a dc microgrid in both grid-connected and islanded modes and its integration into an existing ac infrastructure are subject to significant challenges that impede the practical realization of dc microgrids. On one hand, because the dc voltage profile is coupled with the injected active power at the system buses, it is seriously influenced by the intermittent nature of renewable resources such as solar and wind energy. In islanded operating mode, the presence of system resistance leads to a further trade-off between an appropriate system voltage profile and a precise power management scheme. On the other hand, the development of hybrid ac/dc microgrids introduces a fresh operational philosophy that enhances power sharing among ac and dc subgrids through the coupling of ac and dc steady-state variables. With these challenges as motivation, the primary goal of this thesis was to develop effective power management schemes and a steady-state analysis tool that can enable the reliable integration of dc microgrids into a smart hybrid ac/dc paradigm. Achieving this objective entailed the completion of three core studies: 1) the introduction of a robust control scheme for mitigating voltage regulation challenges associated with dc distribution systems (DCDSs) that are characterized by a high penetration of distributed and renewable generation, 2) the proposal of a supervisory control strategy for precise DG output power allocation that is based on DG rating and operational costs yet guarantees an appropriate voltage profile for islanded dc microgrids, 3) the development of an accurate and comprehensive power flow algorithm for analyzing the steady-state behaviour of islanded hybrid ac/dc microgrids, and 4) the optimization of hybrid ac/dc microgrids configuration. As the first research component, a novel multi-agent control scheme has been developed for regulating the voltage profile of DCDSs that incorporate a large number of intermittent energy sources. The proposed control scheme consists of two sequential stages. In the first stage, a distributed state estimation algorithm is implemented to estimate the voltage profile in DCDSs, thus enhancing the interlinking converter (IC) operation in regulating the system voltages within specified limits. If the IC alone fails to regulate the system voltages, a second control stage is activated and executed through either equal or optimum curtailment strategy of the DG output power. A variety of case studies have been conducted in order to demonstrate the effectiveness, robustness, and convergence characteristics of the control schemes that have been developed. The second element of this research is a multi-agent supervisory control that has been created in order to provide precise power management in isolated DC microgrids. Two aspects of power management have been considered: 1) equal power sharing, which has been realized via a proposed distributed equal power sharing (DEPS) algorithm, and 2) optimal power dispatch, which has been achieved through a proposed distributed equal incremental cost (DEIC) algorithm. Both algorithms offer the additional advantage of affording the ability to restore the average system voltage to its nominal value. Real-time OPAL-RT simulations have demonstrated the effectiveness of the developed algorithms in a hardware-in-the-loop (HIL) application. The third part of the research has introduced a sequential power flow algorithm for hybrid ac/dc microgrids operating in islanded mode. In contrast to the conditions in grid-connected systems, variable rather than fixed ac frequencies and dc voltages are utilized for coordinating power between the ac and dc microgrids. The primary challenge is to solve the power flow problem in hybrid microgrids in a manner that includes consideration of both the absence of a slack bus and the coupling between the frequency and dc voltage though ICs. In the proposed algorithm, the ac power flow is solved using the Newton-Raphson (NR) method, thereby updating the ac variables and utilizing them accordingly in a proposed IC model for solving the dc problem. This sequential algorithm is iterated until convergence. The accuracy of the algorithm has been verified through detailed time-domain simulations using PSCAD/EMTDC, and its robustness and computational cost compare favourable with those of conventional algorithms. The final part highlights the implementation of the developed steady-state models in obtaining an optimum hybrid microgrid configuration. The system configuration could be manipulated by changing the DG droop settings as well as the network topological structure. The contribution of both approaches has been investigated, through an optimum power flow (OPF) formulation, in improving the system loadability as the primary measure of the hybrid microgrid performance
    • 

    corecore