4,013 research outputs found

    Extreme Entropy Machines: Robust information theoretic classification

    Full text link
    Most of the existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach this problem in a more information theoretic way by investigating applicability of entropy measures as a classification model objective function. We focus on quadratic Renyi's entropy and connected Cauchy-Schwarz Divergence which leads to the construction of Extreme Entropy Machines (EEM). The main contribution of this paper is proposing a model based on the information theoretic concepts which on the one hand shows new, entropic perspective on known linear classifiers and on the other leads to a construction of very robust method competetitive with the state of the art non-information theoretic ones (including Support Vector Machines and Extreme Learning Machines). Evaluation on numerous problems spanning from small, simple ones from UCI repository to the large (hundreads of thousands of samples) extremely unbalanced (up to 100:1 classes' ratios) datasets shows wide applicability of the EEM in real life problems and that it scales well

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values

    Full text link
    This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0625

    Support Vector Machine Classification on a Biased Training Set: Multi-Jet Background Rejection at Hadron Colliders

    Full text link
    This paper describes an innovative way to optimize a multivariate classifier, in particular a Support Vector Machine algorithm, on a problem characterized by a biased training sample. This is possible thanks to the feedback of a signal-background template fit performed on a validation sample and included both in the optimization process and in the input variable selection. The procedure is applied to a real case of interest at hadron collider experiments: the reduction and the estimate of the multi-jet background in the W→eνW\to e \nu plus jets data sample collected by the CDF experiment. The training samples, partially derived from data and partially from simulation, are described in detail together with the input variables exploited for the classification. At present, the reached performance is superior to any other prescription applied to the same final state at hadron collider experiments.Comment: 24 pages, 8 figures, preprint of NIM pape
    • …
    corecore